Separating p's, π 's, and K's Summary of TRD session

M. L. Cherry Louisiana State university

CERN, Oct. 2, 2015

Design criteria for tuning a high energy TRD:

- X-rays are emitted at energies below $\gamma \omega_1$.
- Highest frequency maximum in interference pattern occurs near

$$\omega_{\text{max}} = I_1 \omega_1^2 / 2\pi c$$

Total TR yield ~ γ up to saturation energy

$$\gamma_s = 0.6 \omega_1 (I_1 I_2)^{1/2} / c$$

Questions:

Emphasize high frequencies where dependence on particle energy is highest, or

Emphasize lower energies where K-edge absorption is not such a large factor?

Use multiple detectors tuned to individual particle species, or just one configuration?

What is the most interesting TR energy range?

The largest dependence on the gamma factor is in the area close to the cut-off frequency.

Cut-off frequency
$$\omega_c = \omega_p * \gamma$$

90% of energy in the range of $0.1\omega_{\rm c} < \omega < \omega_{\rm c}$

Low number of photons can be compensated by the length of the detector. Radiators with low ω_p are preferable!

$$\gamma_{\text{sat}} = 0.6 \ \omega_p \sqrt{l_1 l_2/c}$$
.

At low ω_p we can push γ_{sat} up using I_1 nd I_2

Fig. 3. The radiated TR spectrum from a polyethylene sur face.

Why 20-60 keV energy range?

LSO: Lu₂SiO₅:Ce^{3+:}

- •Density -7,41 г/см3
- •Effective Z 66
- Light yield 30 photons=keV
- •Fast response 40 ns
- •Emission spectrum with Imax 440 nm
- •Typical dE/dx loss in10 μm of LSO is 10 keV

Thin Layer of plastic (100 – 400 μ m) with Lu₂SiO₅:Ce³⁺ powder (granules 0.3-0.8 μ m), LSO thickness 4.0 - 21.0 mg/cm², LSO

Separating electrons and pions SLAC, 1973

$$P_1 = P_e^{(1)}(x_1) P_e^{(2)}(x_2) \dots P_e^{(n)}(x_n).$$

Similarly, the probability that a pion will produce this same set of signals is:

$$P_2 = P_{\pi}^{(1)}(x_1) P_{\pi}^{(2)}(x_2) \dots P_{\pi}^{(n)}(x_n).$$

If we wish to decide whether or not the event defined by the pulse heights characterizes an electron or pion, we can define the quantity

$$P_{\rm e} = P_1/(P_1 + P_2).$$

This quantity defines the probability of interpretation of the event as an electron. (This definition assumes equal a priori probability for electrons and pions.) Similarly, the quantity

$$P_{x} = P_{2}/(P_{1} + P_{2}) = 1 - P_{e}$$

is the probability of interpretation of the event as a pion.

From Micromegas to GridPix

MM invented by Y. Giomataris, et al. (NIMA 376, p. 29-35, 1995)

Two stage parallel plate detector:

- Ionization in drift volume
- Gas amplification in thin gap with high electric field

Standard charge collection:

- Pads of several mm²
- Long strips (I~10 cm, pitch ~200 μm)

Could the spatial resolution of single electrons be improved?

Ar:CO₂ 70:30
$$\rightarrow$$
 D₁ = 187 μ m/ \sqrt{cm} \rightarrow σ = 21 μ m

Ar:CH₄ 90:10
$$\rightarrow$$
 D₁ = 208 μ m/ \sqrt{cm} \rightarrow σ = 24 μ m

Ar:iButan 95:5
$$\rightarrow$$
 D_t = 211 μ m/ \sqrt{cm} \rightarrow σ = 24 μ m

Smaller pads/pixels could result in better resolution!
At NIKHEF the GridPix was invented.

Some online event display pictures

Pol/Air, 15 μ m/ 300 μ m, Nf=100 - 200 ?

-we assume that the collected photons are ≈ 2 per TRD set at best

→ we need 50 sets (each with 200 foils radiator) to get 100 TR photons

Fermilab E 769 @250 GeV (1991) 24 sets - L = 2.79 m

 π contamination = 2% @ 87% p acceptance

simulation at @ 500 GeV/c $\mathbf{k}(2\%) \pi$ (98%) π contamination = 3% @ 90% \mathbf{k} acceptance

k/p separation ability not quoted...

 π/k becomes $\approx 1\%$ with

24 sets, **L = 1.32 m**

but note:
k/p separation is
not quoted...

What happened

later at higher

energies?

Thick configuration – Number of hit layers

Pol/Air, 100 μ m/ 2000 μ m, Nf=200, Straw layer=8

Straw tube simulation results

Thick configuration – Energy loss

Energy deposition in the 2nd layer

Thick configuration – Fired layers

Example radiator/detector configuration #3:

20 modules

N = 50 teflon foils, ω_1 = 28.5 eV

foil thickness $I_1 = 50 \mu$, spacing $I_2 = 6 \text{ mm}$

 $\omega_{\text{max}} = 32.7 \text{ keV}$ $\gamma_{\text{s}} = 4.8 \times 10^4$

Total length 6.3 m Thickness 11 g

Modules 1-10: 1 cm Xe Modules 11-20: 2 cm Xe

Include Compton + photoelectric cross sections

Account for feedthrough from one module to next

78% pion efficiency 2.2% of K's incorrectly identified as π 's 0.02% of p's incorrectly identified as π 's

55% proton efficiency 4.2% of K's incorrectly identified as p's 0.8% of π 's incorrectly identified as p's

Compton Scatter TRD

TR x-rays emitted with angle $\sim 1/\gamma$

→ difficult to spatially separate from ionization signal

Two Paths to take

- 1. Don't separate:
- Layer with thin gas (xenon) detector can detect photons well below ~30 keV
- Detection length sufficiently thin to keep ionization signal not much larger than TR signal
- Maximal efficiency requires keeping ω 's to be low and radiator foils to be thin
- 2. Separate via Compton Scattering
- Employ 250 μ m Al foils to push TR x-ray energies > ~50 keV where Compton scattering begins to dominate
- Al radiator foils can then Compton scatter TR photons, separating them from ionization deposition
- Detect scattered high-energy photons with scintillator (CsI) efficiently

See

Measurement of Compton Scattered Transition Radiation at High Lorentz Factors, G. Case et al., hep-ex/0209038

Compton Scattered Transition Radiation from Very High Energy Particles, M. Cherry & G. Case, astro-ph/02060663

"Standard" configuration – SLAC test w/plastic foils/foam, Xe

Compton scatter configuration – CERN test w/Al honeycomb, Nal

Measured spectrum, 150 GeV/c electrons with Al honeycomb radiator (upper curve) and solid background plates (lower curve)

M.Deutschmann et al.

Partice identification using the angular distribution of transition radiation

N.I.M. 180 (1981) 409-412

Fig. 2. Angular distribution of a single surface yield.

Figure 15. – Single-foil angular distribution for Li/He: $l_1=50~\mu\mathrm{m}$, $\gamma=2\cdot10^3$ and $\omega=\omega_1\gamma_{\mathrm{th}}/\pi$: the particle moves upwards.

Can we envisage a "miniaturized"

ring imaging TRD = RITRD?

now we have more advanced pixel detectors! (see next talk)

-we can collect with 10 sets radiator/pixel detector ≈ 20 TR photons (better than a conventional RICH) to overlay on a unique frame to reconstruct a ring

-conventional 15 μ foil radiators to let any hadron to radiate + 1 m "espansion distance" in helium \rightarrow L \approx 10 m, still long, but X₀ and $\lambda_{\rm I}$ will be negligible!

-pixel size $50\mu \times 50\mu$? (spatial resolution optimized by *centroid* calculation)

-the momenta, namely the rings radii per each kind of particle, are fixed by the calorimeter: at 1 m of espansion distance ->

 $R_p = 1 \text{mm} @ \gamma = 1000 (1 \text{ TeV proton}) \text{ or } R_k = 0.5 \text{mm} @ \gamma = 2000 (1 \text{ TeV kaon})$

Questions that we need answered:

- What p-pi-K identification/rejection performance is required?
- What is energy range?
- What energy resolution is required?
- How much physical space is available, lateral and along the beam?
- What is maximum amount of material allowed in beam?
- How many particles expected per event, what event rate?