Muon Detectors

Why muons?

... also punch-through monitoring

Muons can come from the primary collision in (prompt) pairs : $\mu+\mu$ from a very short-lived heavy flavour (Q = charm or bottom) hadron
from π or K decay. Lifetimes very long
from upstream interactions in pipe, materials

Muons: from primary collision:

- >> Drell-Yan pairs: q-qbar annihliation. $M^2/s = x_1.x_2$ say ~ $(2/13,000)^2 = 2.36 \times 10^{-8}$ x_1 large (only q) drives x_2 (qbar) very small. u-ubar >> d-dbar (x16 if pdf's same)
- Probe of very low-x sea quarks.
- >> Photoproduced J/ ψ , ψ (2S), $Y_{1,2,3}$ (γ + pomeron \rightarrow X). Different regime of HERA
- >> γγ \rightarrow μ+μ- (especially in AA)

Some acceptance for measuring both! What is it?

gg $\rightarrow \chi c \rightarrow J/\psi + \gamma \rightarrow \mu + \mu - \gamma$ (with γ measurement in EM calorimeter) Handle on very low-x gluons.

Almost prompt, from c, b decays. Note BR (D0 \rightarrow μ +X) = 6.7%

Background from π , K etc decays. $\gamma c\tau(\pi)$ at 2.8 TeV = 150 km, . $\gamma c\tau(K+)$ = 70 km

(But there are many to start with!) , and π/K spectra measured.

Precision tracking before TRDs, calorimeter, helps eliminate upstream interactions

Muon Measurement behind calorimeter

Area to cover same as calorimeter \sim 20 cm x 30 cm, can take length 1m if wanted. Do not need high precision (scattering upstream), p comes from front tracking. Muon dE/dx at 1 TeV is \sim 4 GeV/m of tungsten, rising slowly with p. (Calo range)

Want trigger capability. Some x vs p correlation so trigger fn(x) may be useful.

Many possible techniques. Radiation relatively low (well shielded both directions) Scintillating bars or fibers, wire chambers of many types. 3-views u,v,x or x,y,u preferred. Could use any of several technologies, used by much larger central systems. CMS has Cathode Strip Chambers, upgrade plans Triple-GEMS

This "real estate" between calorimeter and TAN could allow real-life LHC experience of Interesting new designs "parasitically" behind a simple but adequate muon detector.

From PDG: passage of particles through matter.

In range of increasing energy loss

Muon tracking behind calorimeter

High-tech example (overkill):

Abusleme et al (ATLAS) http://arxiv.org/abs/1509.06329

Full-Size Small-Strip Thin Gap Chamber | ATLAS New Small Wheel Muon Upgrade

Figure 2: Schematic diagram of the basic sTGC structure.

Prototype tested about 1 m^2 , real thing in ATLAS upgrade orders of magnitude larger. High luminosity capability, 50 μ m resolution. Not needed, reduce channel count.

E.g. 3 planes in u,v,x orientation. At 60° {x+u+v} = K Check sum, maybe be useful for fast trigger)

Wavelength-shifting fibers ~ 2mm SiPM readout each end

