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Current understanding of heavy-ion collisions
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Missing
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Event-by-event calculations needed for soft physics (low pT )

Statistical analysis techniques developed to understand the large
number of events

Hard physics (highpT ) affected by initial conditions, the medium, and the
energy loss model

Can soft physics techniques be applied to hard physics?
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Same density (centrality), different shapes

Centrality bins by the density, but for the same density..
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Elliptical flow distributions

Event-by-event calculations are necessary to describe the vn
distributions
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vn distributions place a new constraint on initial conditions
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Cumulants calculate the moments of the distributions

vn{2} ≡
√
〈v2

n 〉 > 〈vn〉
vn{4} ≡(
2〈v2

n 〉2 − 〈v4
n 〉
)0.25

Higher order cumulants
converge→ sign of
collective behavior!
Higher order cumulants
eliminate non-flow effects

[ALICE] Phys. Rev. C 90 (2014) 054901
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Shape, not small scale fluctuations→ flow harmonics

Eccentricities drive the final flow
harmonics
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Smoothing scale (λ) probes energy
scales

JNH, Noronha, Gyulassy, Phys.Rev. C93 (2016) 2,
024909

However, λ has almost no effect on
the flow harmonics (PbPb)
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SHEE=Soft Hard Event Engineering
Use the best fit hydro models for low pT
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mckln (fluctuations smoothed out to λ = 0.3 fm): η/s = 0.11

mckln (fluctuations smoothed out to λ = 1 fm): η/s = 0.1128

mcglauber: η/s = 0.08
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Model: event-by-event v-USPhydro+energy loss

Full Hydro in v-USPhydro [1] into BBMG energy loss model [2]:

dE
dL

= −κEa(L) Lz T c ζq Γflow

κ is the jet-medium coupling
T is the local temperature along the jet trajectory
c = 2 + z − a
ζq describes energy loss fluctuations
Γflow = Γf = γ

[
1− v cos

(
φjet − φflow

)]
is the flow factor

defined using the local flow velocities of the medium
[1] JNH et al, PRC88 (2013) 044916 ; PRC90 (2014) 3, 034907
[2] Betz, Gyulassy and Torrieri,PRC 84, 024913 (2011); B. Betz and M. Gyulassy, PRC 86, 024903 (2012) ; JHEP
1408, 090 (2014)
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Wasn’t this done already?

No.
Here’s what people have looked at already:

Fluctuating initial conditions but not full hydrodynamics
temperature profiles
Zhang,Liao Phys.Rev. C87 (2013) 044910

Smoothed hydrodynamical/parton cascade/URQMD
backgrounds (many groups)
Jets effects (as a source term) on soft physics
Andrade, Noronha, and Denicol PRC90 (2014) 2, 024914 ; Pang et al PRC86 (2012) 024911
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Correlated vn calculation

Experimentally, high and low particles are correlated to
calculate the flow.
Theoretically, high pT flow harmonic are calculated via:

vhigh
n (pT & 10 GeV) =

〈vs
n vn(pT ) cos [n (ψs

n − ψn(pT )])〉√
〈(vs

n )2〉
, (1)

where the soft flow harmonic is vs
n and the high pT flow

harmonic is vn(pT )

vhigh
n (pT & 10 GeV) is largest when the jet angle is aligned with

the low pT event plane angle
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Correlated event plane angles

Elliptical flow angle highly correlated between soft and hard
physics, triangular flow angle is not

Experiment

Jia PRC87,no. 6,061901(2013)
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Results: RAA, v2, and v3
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mckln provides the best fit at both low and high pT

RAA not as sensitive as vn’s to eccentricities/event-by-event
calculations
v2 is more sensitive to the initial conditions due to the
correlated high/low angles. First calculation of high pT v3.
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Results: v2 low-high correlations

Experiment

Jia PRC87,no. 6,061901(2013)
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Clear correlation between high and low v2

Note differences in pt bins (only qualitative comparison)
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Assuming linear response..

Then vs
n ≈ c εn, vn ≈ χn(pT ) εn, and n (ψs

n − ψn(pT )) ≈ 0

vhigh
n (pT & 10 GeV) =

〈vs
n vn(pT ) cos [n (ψs

n − ψn(pT ))]〉√
〈(vs

n )2〉

vhigh
n (pT & 10 GeV) ≈ cχn(pT )〈ε2

n〉

c
√
〈ε2

n〉

≈ χn(pT )

√
〈ε2

n〉
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Energy loss susceptibility
χn(pT ) = v high

n /
√

〈ε2
n〉
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Event Shape Engineering
Picking events out of the low pT v2 distribution ( v2

〈v2〉
)
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Smaller scale fluctuations lead to slightly wider distributions ( 10% effect)



Introduction Soft Hard Event Engineering Results Energy loss susceptibility Event Shape Engineering Robustness Outlook

Event Shape Engineering
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Differences in initial conditions are more pronounced
RAA slight dependence on the smoothing scale
Effect of Glauber’s wider distribution very clear at high pT
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Freeze-out temperature
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Decreasing the freeze-out Temperature allows more time
to build up flow
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Path Length Dependence (linear vs. squared)
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My experimental wish list

Percentages of events (compared to all events) triggered
on that which produce high pT jets
Comparison of vn distributions and cumulants in the low pT
region of events that produce jets
Event shape engineering extended up to higher pT ranges
Cumulants at high pT ??
Improved statistics on v3 of high pT

vn’s of π0
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My theoretical wish list

Full integration of jets into hydrodynamics (jets included in
the equations of motion with energy loss calculations as
well)
More statistics, centralities, energies, systems sizes (pPb)
etc
Full analysis of effects of hydrodynamic parameters (shear
+ bulk viscosity, Equation of State)
Mapping of eccentricities onto high pT flow harmonics
Flavor dependence
Variation in the energy loss model
Beam Energy Scan
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Conclusions

Soft-hard Event Engineering (SHEE) reproduces both RAA
as well as high pT v2

First theoretical calculation of high pT v3 (only possible
with event-by-event calculations)
ψ2 high/low more strongly correlated than ψ3

Indications of linear response at vhigh
n

Event-shape-engineering shows clear differences between
initial state models
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