IntroductionSoft Hard Event Engineering
0000ResultsEnergy loss susceptibility
00Event Shape Engineering
00Robustness
000Outlook
000

Soft-Hard Event Engineering (SHEE) at RHIC and LHC Jacquelyn Noronha-Hostler

Jacquelyn Noronha-Hostler University of Houston

32nd Winter Workshop on Nuclear Dynamics March 3rd 2016- Guadeloupe

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction	Soft Hard Event Engineering	Results	Energy loss susceptibility	Event Shape Engineering	Robustness	Outlook

Outline

- 2 Soft Hard Event Engineering
- 3 Results
- Energy loss susceptibility
- 5 Event Shape Engineering
- 6 Robustness

Current understanding of heavy-ion collisions

- Event-by-event calculations needed for soft physics (low p_T)
- Statistical analysis techniques developed to understand the large number of events
- Hard physics (highp_T) affected by initial conditions, the medium, and the energy loss model

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

• Can soft physics techniques be applied to hard physics?

Introduction
oSoft Hard Event Engineering
oResults
oEnergy loss susceptibility
oEvent Shape Engineering
oRobustness
oOutlook
o

Same density (centrality), different shapes

Centrality bins by the density, but for the same density..

"Event-by-Event" Holding the number of partons (density) constant for the same types of collisions, different shapes can be formed.

Triangles, squares etc can even appear...

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Elliptical flow distributions

Event-by-event calculations are necessary to describe the v_n distributions

From [Atlas] JHEP 1311, 183 (2013) [arXiv:1305.2942 [hep-ex]]

 v_n distributions place a new constraint on initial conditions

Introduction
ococo-Soft Hard Event Engineering
ococo-Results
ococo-Energy loss susceptibility
ococo-Event Shape Engineering
ococo-Robustness
ococo-Outlook
ococo-

Cumulants calculate the moments of the distributions

•
$$v_n$$
{2} $\equiv \sqrt{\langle v_n^2 \rangle} > \langle v_n \rangle$

- $v_n\{4\} \equiv (2\langle v_n^2 \rangle^2 \langle v_n^4 \rangle)^{0.25}$
- Higher order cumulants converge → sign of collective behavior!
- Higher order cumulants eliminate non-flow effects

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Shape, not small scale fluctuations \rightarrow flow harmonics

Eccentricities drive the final flow

harmonics

Gardim et al. PRC85(2012)024908. Gardim, JNH, Luzum, Grassi PRC91 (2015) 3, 034902 Smoothing scale (λ) probes energy scales

However, λ has almost no effect on the flow harmonics (PbPb)

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト ъ Introduction Soft Hard Event Engineering event Shape e

SHEE=Soft Hard Event Engineering Use the best fit hydro models for low p_T

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

- mckln (fluctuations smoothed out to $\lambda = 0.3$ fm): $\eta/s = 0.11$
- mckln (fluctuations smoothed out to $\lambda = 1$ fm): $\eta/s = 0.1128$
- mcglauber: $\eta/s = 0.08$

Introduction Soft Hard Event Engineering ooo Outlook oo Outlook

Model: event-by-event v-USPhydro+energy loss

Full Hydro in v-USPhydro [1] into BBMG energy loss model [2]:

$$\frac{dE}{dL} = -\kappa \, E^a(L) \, L^z \, T^c \, \zeta_q \, \Gamma_{\rm flow}$$

- κ is the jet-medium coupling
- *T* is the local temperature along the jet trajectory c = 2 + z a
- ζ_q describes energy loss fluctuations
- Γ_{flow} = Γ_f = γ [1 − ν cos (φ_{jet} − φ_{flow})] is the flow factor defined using the local flow velocities of the medium

JNH et al, PRC88 (2013) 044916 ; PRC90 (2014) 3, 034907
 Betz, Gyulassy and Torrieri, PRC 84, 024913 (2011); B. Betz and M. Gyulassy, PRC 86, 024903 (2012) ; JHEP 1408, 090 (2014)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Wasn't this done already?

No.

Here's what people have looked at already:

- Fluctuating initial conditions but not full hydrodynamics temperature profiles Zhang,Liao Phys.Rev. C87 (2013) 044910
- Smoothed hydrodynamical/parton cascade/URQMD backgrounds (many groups)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 Jets effects (as a source term) on soft physics Andrade, Noronha, and Denicol PRC90 (2014) 2, 024914 ; Pang et al PRC86 (2012) 024911

Correlated vn calculation

Experimentally, high and low particles are correlated to calculate the flow.

Theoretically, high p_T flow harmonic are calculated via:

$$v_n^{\text{high}}(p_T \gtrsim 10 \,\text{GeV}) = \frac{\langle v_n^s \, v_n(p_T) \cos\left[n\left(\psi_n^s - \psi_n(p_T)\right)\right)\rangle}{\sqrt{\langle (v_n^s)^2 \rangle}}, \quad (1)$$

where the soft flow harmonic is v_n^s and the high p_T flow harmonic is $v_n(p_T)$

 $v_n^{high}(p_T\gtrsim 10\,{\rm GeV})$ is largest when the jet angle is aligned with the low p_T event plane angle

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Correlated event plane angles

Elliptical flow angle highly correlated between soft and hard physics, triangular flow angle is not

JNH, Betz, Noronha, Gyulassy, arXiv:1602.03788 [nucl-th]

Results: R_{AA} , v_2 , and v_3

- mckln provides the best fit at both low and high p_T
- *R_{AA}* not as sensitive as *v_n*'s to eccentricities/event-by-event calculations
- v₂ is more sensitive to the initial conditions due to the correlated high/low angles. First calculation of high p_T v₃.

Introduction Soft Hard Event Engineering ooo

Results: v_2 low-high correlations

- Clear correlation between high and low v₂
- Note differences in pt bins (only qualitative comparison)

ヘロト ヘ戸ト ヘヨト

Introduction	Soft Hard Event Engineering	Results	Energy loss susceptibility	Event Shape Engineering	Robustness	Outlook
			•0			

Assuming linear response..

Then
$$v_n^s \approx c \varepsilon_n$$
, $v_n \approx \chi_n(p_T) \varepsilon_n$, and $n(\psi_n^s - \psi_n(p_T)) \approx 0$
 $v_n^{\text{high}}(p_T \gtrsim 10 \,\text{GeV}) = \frac{\langle v_n^s v_n(p_T) \cos [n(\psi_n^s - \psi_n(p_T))] \rangle}{\sqrt{\langle (v_n^s)^2 \rangle}}$
 $v_n^{\text{high}}(p_T \gtrsim 10 \,\text{GeV}) \approx \frac{c\chi_n(p_T) \langle \varepsilon_n^2 \rangle}{c\sqrt{\langle \varepsilon_n^2 \rangle}}$
 $\approx \chi_n(p_T) \sqrt{\langle \varepsilon_n^2 \rangle}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction Soft Hard Event Engineering Results Energy loss susceptibility Event Shape Engineering Robustness Outlook

Energy loss susceptibility $\chi_n(\rho_T) = v_n^{\text{high}} / \sqrt{\langle \varepsilon_n^2 \rangle}$

- For current energy loss set-up linear response holds
- Slight differences most likely due to differences in η/s
- Independent of the initial conditions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction Soft Hard Event Engineering ooo

Event Shape Engineering Picking events out of the low $p_T v_2$ distribution $\left(\frac{v_2}{1/k_2}\right)$

- ebe Random ε₂: random ε₂ within the same centrality class
- ebe top 1% ε₂: top 1% of ε₂ within the centrality class (shaded)

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

JNH, Betz, Noronha, Gyulassy, arXiv:1602.03788 [nucl-th] Smaller scale fluctuations lead to slightly wider distributions (10% effect) IntroductionSoft Hard Event Engineering
0000ResultsEnergy loss susceptibility
00Event Shape Engineering
0●RobustnessOutlook
000

Event Shape Engineering $v_2^{\text{high}}(\rho_T; C^s)/v_2^{\text{high}}(\rho_T)$

[ALICE] arXiv:1507.06194 [nucl-ex].

- Differences in initial conditions are more pronounced
- R_{AA} slight dependence on the smoothing scale
- Effect of Glauber's wider distribution very clear at high p_T

ヘロト ヘ戸ト ヘヨト

Introduction	Soft Hard Event Engineering	Results	Energy loss susceptibility	Event Shape Engineering	Robustness	Outlook
					•0	

Freeze-out temperature

 Decreasing the freeze-out Temperature allows more time to build up flow

Path Length Dependence (linear vs. squared)

◆□▶◆□▶◆□▶◆□▶ □ のへで

My experimental wish list

- Percentages of events (compared to all events) triggered on that which produce high *p*_T jets
- Comparison of v_n distributions and cumulants in the low p_T region of events that produce jets
- Event shape engineering extended up to higher p_T ranges

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Cumulants at high p_T??
- Improved statistics on v₃ of high p_T
- *v_n*'s of π₀

My theoretical wish list

- Full integration of jets into hydrodynamics (jets included in the equations of motion with energy loss calculations as well)
- More statistics, centralities, energies, systems sizes (pPb) etc
- Full analysis of effects of hydrodynamic parameters (shear + bulk viscosity, Equation of State)
- Mapping of eccentricities onto high p_T flow harmonics
- Flavor dependence
- Variation in the energy loss model
- Beam Energy Scan

Introduction	Soft Hard Event Engineering	Results	Energy loss susceptibility	Event Shape Engineering	Robustness	Outlook
						000

Conclusions

- Soft-hard Event Engineering (SHEE) reproduces both R_{AA} as well as high p_T v₂
- First theoretical calculation of high p_T v₃ (only possible with event-by-event calculations)
- ψ_2 high/low more strongly correlated than ψ_3
- Indications of linear response at v_n^{high}
- Event-shape-engineering shows clear differences between initial state models

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●