

Identified Light and Strange Hadron Spectra at $\sqrt{s_{NN}} = 14.5$ GeV with STAR at RHIC BES I

DANIEL BRANDENBURG RICE UNIVERSITY FOR THE STAR COLLABORATION

32ND WINTER WORKSHOP ON NUCLEAR DYNAMICS MONDAY FEBRUARY 29TH GUADELOUPE, FRANCE

STAR 🛠 RHIC Beam Energy Scan (BES) Phase I

BES Phase I - Au+Au collisions at 7.7, 11.5, 14.5, 19.6,

27.0, and 39.0 GeV

- Search for Conjectured
 QCD critical point
- Search for 1st order phase transition

Search for the onset of key QGP signatures

$$\sqrt{s_{NN}}$$
 = 14.5 GeV

 Important measurement in the relatively large μ_B gap between 11.5 and 19.6 GeV

Baryon Chemical Potential μ_B

$\sqrt{s_{NN}}$ [GeV] =	7.7	11.5	14.5	19.6	27.0	39.0
$^{\sim}\mu_{B}$ (in central collisions)[MeV]	420	315	260	205	155	115
J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton, Phys. Rev. C73 (2006) 034905						
Daniel Brandenburg STAR						2

STAR * Onset of QGP Signatures

Nuclear Modification Factor R_{CP}

• High p_T suppression $\equiv R_{CP} < 1.0$

- Strong suppression observed in inclusive charged hadrons at top RHIC energies.
- Attributed to energy loss in QGP
- Enhancement $\equiv R_{CP} > 1.0$
 - Cold nuclear matter effects, radial flow and coalescence.

R_{CP} vs. R_{AA}

- R_{CP} analysis can be done with a single dataset
- The pp baseline in R_{AA} has no hot nuclear matter effects
- R_{CP} is less sensitive than R_{AA} to cold nuclear matter effects
- R_{CP} has large correlated systematic uncertainty on the calculation of N_{coll} in peripheral events

STAR * Nuclear Modification Factor R_{CP} (0-5%)/(60-80%)@ BES I Energies

Inclusive Charged hadrons @ RHIC BES I

Smooth transition in the intermediate to high p_T range from suppression at $\sqrt{s_{NN}} = 39$ GeV to strong enhancement at $\sqrt{s_{NN}} = 7.7$ GeV

STAR * Onset of QGP Signatures

Baryon/Meson Ratio eg. (Λ/K_S^0) and (p/π)

- Baryon enhancement observed in Au+Au collisions at top RHIC energies
- Baryon/Meson ratio is sensitive to QGP formation through:
 - Parton recombination
 - Coalescence
- Baryon/Meson ratio is also sensitive to:
 - Radial flow
 - cold nuclear matter effects

Time Projection Chamber (TPC)

- Charged Particle Tracking
- Momentum reconstruction
- Particle identification from ionization energy loss (dE/dx)
- Pseudorapidity coverage
 |η| < 1.0

Time Of Flight (TOF) Detector

- Particle identification 1/β
- Pseudorapidity coverage
 |η| < 0.9

The BBC detectors are used to trigger minimum bias collisions

STAR * Particle Identification @ STAR

STAR \bigstar Light Hadron Spectra @ Au+Au $\sqrt{s_{NN}}$ =14.5 GeV

STAR * Topological Particle Identification

STAR \ddagger Strange Hadron Spectra @Au+Au $\sqrt{s_{NN}}$ = 14.5 GeV

STAR \bigstar Strange Hadron Spectra @Au+Au $\sqrt{s_{NN}}$ = 14.5 GeV

 Λ spectra, Au+Au 14.5 GeV

 $\overline{\Lambda}$ spectra, Au+Au 14.5 GeV

- |y| < 0.5
- A spectra are weak decay feed-down corrected

STAR \bigstar Strange Hadron Spectra @Au+Au $\sqrt{s_{NN}}$ = 14.5 GeV

Ξ spectra, Au+Au 14.5 GeV

 $\overline{\Xi}^{\dagger}$ spectra, Au+Au 14.5 GeV

STAR \Rightarrow R_{CP} (0-5%)/(60-80%)@ Au+Au $\sqrt{s_{NN}}$ = 14.5

STAR AR R_{CP} (0-5%)/(60-80%)@ BES | Energies

STAR * Strange Hadron R_{CP} (0-5%)/(40-60%)@ BES I Energies

- R_{CP} is greater than or equal to 1 for $p_T > ~1.5$ GeV/c
- R_{CP} particle type dependence becomes less significant
- Specifically baryon vs. meson difference at intermediate p_T becomes less pronounced

STAR ★ Baryon/Meson Ratio : p/π⁺ @ BES I

STAR \bigstar Baryon/Meson Ratio : Λ/K_s^0 @ BES I

Separation between centralities decreases with decreasing $\sqrt{s_{NN}}$ "Double ratio" peak p_T value changes with $\sqrt{s_{NN}}$

STAR * Conclusions

Au+Au Collisions at $\sqrt{s_{NN}}$ = 14.5 GeV

- $\hfill New$ (at QM15) STAR results in the large μ_B gap between 11.5 and 19.6 GeV
- Completes the RHIC Beam Energy Scan Phase I

Onset of QGP signatures

- R_{CP} from $\sqrt{S_{NN}}$ = 14.5 GeV in both light and strange hadrons agrees with the trends from other BES I energies
- No evidence of suppression at intermediate p_T in the R_{CP} of all species for energies at and below $\sqrt{S_{NN}} = 14.5$ GeV
- Baryon/Meson ratios show evidence for change in collision dynamics for $\sqrt{S_{NN}}$ below 19.6 GeV

Beam Energy Scan Phase II is needed for conclusive results

- More statistics push kinematic reach to higher p_T
- More energies below $\sqrt{s_{NN}}$ = 20 GeV

THANK YOU

STAR \bigstar Baryon/Meson Ratio : $\overline{\Lambda}/K_s^0$ @ BES I

STAR 🛧 Baryon/Meson Ratio p-bar/π⁻ @ BES I

STAR \bigstar $\pi^{+(-)}$, K⁺⁽⁻⁾, and (anti-)proton particle identification

Extract yields by simultaneously fitting the dE/dx and $1/\beta$ distributions.

Combined TPC + TOF for a single p_T bin

Positive Tracks : $0.9 < p_{T}$ [GeV/c] < 1.0

