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I.    Motivation: impact of viscosity on fluctuations and correlations 
 

II.   Hydrodynamics modes: fluctuations and dissipation 
     a. Viscous diffusion of shear modes 
   b. 1st and 2nd order hydrodynamics 

 

III.  Contributions to correlation measurements 
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Transverse Momentum Fluctuations 

� 

vr

viscous friction as fluid elements flow 
past one another 

small variations in transverse 
flow in each event 

shear viscosity drives 
velocity toward the average  

zvT rzr ∂∂−= η

SG & Mohamed Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302 

damping of radial flow fluctuations      viscosity   ⇒



curl free modes: 

∂t
g =ν∇2 g

sound waves – compression damped by viscosity 
thermal diffusion – heat flow relative to baryons  

viscous diffusion of 
divergence-free modes:   

Small fluctuations of the momentum current 

•  kinematic 
viscosity  ν =η /Ts

•  linearized 1st order Navier Stokes  
•  Helmholtz decomposition: 

Mi ≡ T0i − T0i

and for  

M ≡ g +


h  


∇×

h = 0 


∇⋅ g = 0

Fluctuations: Hydrodynamic Modes 



Transverse Flow Fluctuations 

∂
∂t
gi = ν∇

2 gi + noise( )diffusion equation for 
momentum current 

r 

z 

transverse velocity fluctuations  
 shear modes  

r = gi (x1)gj (x2 ) − gi (x1) gj (x2 )correlation function measures 
deviation of fluctuations from mean 

T0i − T0i ≈ gi Tji
diss ≈ −η∇ jvi = −ν∇ jgi + Langevin noise

viscosity:               SG & Abdel-Aziz, PRL 97 (2006) 162302           
baryon diffusion:   SG & Abdel-Aziz, PR C70 (2004) 034905 
CME observables:  Pratt, Schlichting, SG, PR C84 (2011)  024909 



Noisy Diffusion 

difference equation 

ΔW = 0 ΔW (x1)ΔW (x2 ) = Γ12Δt

Δg = ν∇2gΔt + ΔW

∂
∂t
gi = ν∇

2 gi + noise( )diffusion equation for 
momentum current 

noise 



Noise is Necessary for Equilibrium Fluctuations 

∂t g1g2 = ν ∇1
2 +∇2

2( ) g1g2 + Γ12

ν ∇1
2 +∇2

2( ) g1g2 eq = Γ12

→ req = (e+ p)Tδ (x1 − x2 )

r = gi (x1)gj (x2 ) − gi (x1) gj (x2 )

                       satisfies deterministic diffusion equation 
 

Gardiner, Handbook of Stochastic Methods, (Springer, 2002) 

Δr = r − req

BONUS: 

noisy diffusion equation 

noisy equilibrium state 

correlation function 



Measuring the Correlations 

r = gi (x1)gj (x2 ) − gi (x1) gj (x2 )correlation function 

observable: C = 1
N 2 pi pj

pairs
∑ − pi pj = 1

N 2 (r − req ) dx1 dx2∫

pz

pt

z

Abdel-Aziz & S.G., PRL 97 (2006) 162302; PR C70 (2004) 034905 
Pratt, Schlichting, SG, Phys. Rev. C 84 (2011)  024909 

assumes: proper-time freeze out 



pt Covariance Measured 

STAR data, Phys. Lett. B704 (2011) 467 

σ peripheral = 0.54 ± 0.02

σ central =1.0 ± 0.2

measured: rapidity width of near side peak 
•  fit peak + constant offset  
•  report rms width of the peak 
 
 

find: width increases in central collisions 

C = 1
N 2 pt

a pt
b

a≠b
∑ − pt

2
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FIG. 5: RMS of the correlation function C predicted by NEXSPHERIO (solid squares) as a function of the number of participant
nucleons, compared with the results reported by STAR [12] (solid circles), for nine centrality classes in Au+Au collisions atp
sNN = 200 GeV.

This narrowing e↵ect of transverse flow on rapidity correlations was first discussed in [47, 48]. The narrowing found21

here is rather modest, however, amounting to approximately 0.13 units of rapidity.1

To understand why NEXSPHERIO fails to describe the measured broadening, we ask how broadening may arise2

in general. In Ref. [11], it was predicted that viscous di↵usion can produce a considerable longitudinal broadening3

of the momentum current correlation function C. The idea is that viscous friction acts to reduce the di↵erence in4

transverse flow velocity between neighboring fluid cells. This can be measured by studying the rapidity dependence of5

pt fluctuations, because of the rough correspondence between spatial distance along the beam direction and rapidity. In6

principle, rapidity broadening can also result if the particle production mechanism varies appropriately with centrality.7

We speculate that NEXSPHERIO fails to reproduce the measured broadening because neither e↵ects are included.8

The STAR Collaboration used their measurement of the broadening of the correlation function C to estimate the9

viscosity per unit of entropy based on the following equation [11]:10

�

2
c � �

2
0 = 4

⌘

Tcs

⇣
⌧

�1
0 � ⌧

�1
c,f

⌘
(3)11

where �c and �0 stand for the longitudinal widths of the correlation function in central collisions and at formation12

time, respectively. ⌧0 refers to the formation time and ⌧c,f is the kinetic freeze-out time at which particles have no13

further interactions [45]. Tc stands for a characteristic temperature, here taken to be the critical temperature of14

the medium, Tc = 180 MeV. This expression neglects the fact that radial flow causes a narrowing of the correlation15

function C. We estimate the error due to that omission using (3) as follows. A di↵erence in the width due to flow16

increase the value of ⌘ by a fraction �⌘/⌘ = ��

2
/(�2

c � �

2
p), where �c,p are the measured values in central and17

peripheral collisions. NEXSPHERIO yields a reduction of width from 0.72 in peripheral collisions to 0.54 in central18

collisions, while the data increases from 0.54 to 0.94, see Fig. 5. STAR reports a range ⌘/s = 0.06� 0.21 in [12]. We19

thus estimate an increase of �⌘/⌘ ⇡ 0.38 for the upper limit of this range. This suggests that radial flow e↵ects have20

in fact a somewhat limited impact on the width of the correlation function C relative to that of viscous e↵ects and21

can thus be neglected, to first order, in the extraction of the fluid viscosity based on STAR data.22

IV. CONCLUSIONS23

In summary, we presented a study of the centrality dependence of the correlation functions R2 and C in Au + Au24

collisions at
p
sNN = 200 GeV based on the NEXSPHERIO model. We find the two observables exhibit qualitatively25

similar shapes in �⌘ and ��, and dependence on collision centrality. Quantitative di↵erences however arise from26

the explicit dependence of C on particle momenta. We find that both observables exhibit a near-side ridge in central27

collisions owing to event-by-event fluctuations in the initial transverse energy deposition profile. We studied near-side28

projections of the near-side (|��| < 1.0 radians) of these correlation functions and studied their evolution with collision29

centrality. We found the longitudinal width of C exhibits a small decrease with increasing collision centrality owing to30

radial expansion dynamics. The magnitude of this reduction is rather modest. It is unlikely that this reduction would31

Rapidity Width vs. Centrality 

Sharma et al., Phys. Rev. C84 (2011) 054915  
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⇒ η s = 0.17 ± 0.08

NeXSPheRIO  
•  fits most aspects of 

correlations (ridge, vn, etc.) 
•  not the increased width   
 
 
ideal fluctuating hydro 
doesn’t explain measured 
growth of width 

STAR: increase from peripheral to central 

STAR data, Phys.Lett. B704 (2011) 467 
 



1st Order Diffusion 

Fails: Gaussian profile 
doesn’t describe shape 



1st Order Diffusion 

Fails: Gaussian profile 
doesn’t describe shape 



What is the Bump? 



Diffusion vs. Wave Motion 

Diffusion (1st Order)  

Wave propagation 

•  Gaussian peak spreads 
•  tails violate causality 

•  peak splits into left and right 
traveling pulses 

•  propagation speed v  



2nd Order Viscous Diffusion 

τπ

2
∂2

∂t 2
+ ∂
∂t

−ν ∇1
2 +∇2

2( )⎛
⎝⎜

⎞
⎠⎟
Δr = 0•  transverse modes  

•  linearized Israel-Stewart 
relaxation time τπ

causal transport equation: 
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 zΔ

 = 0.30σ
•  wave-fronts traveling at 

speed = (ν/τπ)1/2 
 

•  diffusion-like 
behavior in between 

•  no peak at Δz = 0  

coordinate space:  

Δr = r − req



2nd Order Viscous Diffusion in Rapidity 

•  rapidity separation of fronts saturates  
   Δη ~ Δz/τ 
 
•  profile depends on initial width σ0    

spatial rapidity  

τπ

2
∂2

∂τ 2
+ ∂
∂τ

− ν
τ 2

∂2

∂η1
2 +

∂2

∂η2
2

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
Δr = 0



2nd Order Viscous Diffusion in Rapidity 

•  rapidity separation of fronts saturates  
   Δη ~ Δz/τ 
 
•  profile depends on initial width σ0    

spatial rapidity  

τπ

2
∂2

∂τ 2
+ ∂
∂τ

− ν
τ 2

∂2

∂η1
2 +

∂2

∂η2
2

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
Δr = 0

STAR data, Phys.Lett. B704 (2011) 467 



1st vs. 2nd Order  

2nd Order Works:  
•  Broader than Gaussian 
•  “Valley” appears in 

more central collisions  



1st vs. 2nd Order  

2nd Order Works:  
•  Broader than Gaussian 
•  “Valley” appears in 

more central collisions  



Realistic 2nd Order Viscous Diffusion 

τπ*
2

∂2
∂τ 2 +

∂
∂τ −ν* ∇12 +∇2

2( )⎛

⎝⎜
⎞

⎠⎟
Δr = 0fluctuations: 

Moschelli, Pokharel, S.G., in progress 
 

τπ
* = τπ

1+κτπ /τ

τπ = βν
ds
dτ

+
s
τ
=

Φ
Tτ

dΦ
dτ

= − 1
τπ

Φ− 4η
3τ

⎛
⎝⎜

⎞
⎠⎟ −

κ
τ
Φ

entropy production:  

relaxation equation:  
causality delays heating 

average Bjorken flow temperature vs time: 

κ = 1
2
1−

d ln τπ ηT( )
d ln s

⎡

⎣
⎢

⎤

⎦
⎥

ν =η / sT

ν * = ν
1+κτπ /τ



Progress 

Israel-Stewart fluctuations  
on Bjorken Background 
 

•  Lattice EOS – HotQCD Collaboration 
•  Lattice viscosity – Nakamura & Sakai 
•  Hagadorn HG  – Noronha-Hostler et al.  
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Israel-Stewart fluctuations  
on Bjorken Background 
 

•  Lattice EOS – HotQCD Collaboration 
•  Lattice viscosity – Nakamura & Sakai 
•  Hagadorn HG  – Noronha-Hostler et al.  



Measuring the Relaxation Time 

Moschelli, Pokharel, S.G. in preparation 
 Width      shear viscosity  

 Valley      relaxation time  

⇒

⇒

τπ = βν

 β = 5

 β = 6.5



Summary: rapidity dependence of pt correlations 

Hydro formulation: longitudinal and transverse modes 
 

•  Sound waves, shear modes, and heat modes  
•  Diffusive transverse shear modes important for rapidity dependence of pt correlations  
•  1st and 2nd order viscous fluctuating hydro description of shear modes  

Open Questions 
 

•  Influence of sound and heat modes on observables 
•  Charge balancing, resonances, jets, HBT     

Causality shapes the rapidity dependence of correlations 
 

•  Shear viscosity  increase of rapidity width with centrality  
•  Relaxation time  “valley”  



Perhaps I can help you 
with that hump. 

What hump? 



Noisy Diffusion 

ΔW = 0 ΔW (x1)ΔW (x2 ) = Γ12Δt

Δ g1g2 = g1Δg2 + Δg1g2 + Δg1Δg2

= ν ∇1
2 +∇2

2( ) g1g2 Δt + Γ12Δt

Δg = ν∇2gΔt + ΔWdifference equation 

noise 

variance 



Noisy Diffusion 

difference equation 

noise ΔW = 0 ΔW (x1)ΔW (x2 ) = Γ12Δt

variance Δ g1g2 == ν ∇1
2 +∇2

2( ) g1g2 + Γ12( )Δt

∂
∂t

g1g2 = ν ∇1
2 +∇2

2( ) g1g2 + Γ12
Γ12 = 2∇1 ⋅∇2ηTδ (x1 − x2 )

Δg = ν∇2gΔt + ΔW

diffusion equation for correlation function: 



covariance 

� 

C = 1
N 2 pti ptj

pairs i≠ j
∑ − pt

2

Covariance Measures Momentum Flux 

unrestricted sum: 

  
rg dx1 dx2 =∫ pti ptj∑ − N

2
pt

2
= pti

2∑ + N
2
C

� 

rg = gt (x1)gt (x2) − gt (x1) gt (x2)

C = 1
N 2 (rg − rg, eq )dx1 dx2∫

∫∑ = 2121
,all

dndnpppp tt
ji

tjti

� 

= dx1dx2 dp1 pt1 f1∫( )∫ dp2pt 2 f2∫( )

� 

gt (x) = dp pt Δf x, p( )∫

� 

dn = f x, p( )dpdx

correlation function: 

C =0 in equilibrium  

= N 2 pt
2 + g(x1)g(x2 )dx1 dx2∫



•  no transverse ‘sound waves’ 
•  kinematic viscosity  
•  vorticity  

Hydrodynamic Modes 

∂t
gL +

∇p =

4
3 η +ζ
sT


∇(

∇⋅ gL )

“transverse” modes  

∇⋅ g = 0

longitudinal modes 

∂t
g =ν∇2 g

sound waves – compression waves, damped by viscosity 
thermal diffusion – heat flow relative to baryons  

longitudinal modes + energy and baryon conservation imply:   

viscous diffusion  

ν =η /Ts
ω ∝


∇× g

 

∇× gL = 0



Momentum in Fluctuating Hydrodynamics 

∂tMi +∇i p =
η / 3+ζ
sT

∇i (

∇⋅

M )+ η

sT
∇2Mi

momentum conservation – linearized Navier-Stokes 

Mi ≡ T0i − T0i ≈ (e + p)vi ≈ sTvi

momentum current – small fluctuations 

Helmholtz decomposition: 

M ≡ gL +

g

∇× gL = 0


∇⋅ g = 0“longitudinal” mode: “transverse” modes: 



                       satisfies deterministic diffusion equation 
 

Gardiner, Handbook of Stochastic Methods, (Springer, 2002) 

Hydrodynamic Momentum Correlations 

r = gr (x1)gr (x2 ) − gr (x1) gr (x2 )

momentum flux density correlation function 

fluctuations diffuse through volume, driving r   req 
width in relative spatial rapidity grows 
from initial value σ0 

spatial rapidity     

σ 2 = σ 0
2 + 4 η

Ts
1
τ 0

−
1
τ

⎛
⎝⎜

⎞
⎠⎟

Δr = r − req


