Rapidity Correlation Structure from Causal Hydrodynamics

George Moschelli and Rajendra Pokharel Sean Gavin Lawrence Technological University Wayne State University

Rapidity Correlation Structure from Causal Hydrodynamics

George Moschelli and Rajendra Pokharel Sean Gavin Lawrence Technological University Wayne State University

I. Motivation: impact of viscosity on fluctuations and correlations

- II. Hydrodynamics modes: fluctuations and dissipation
 a. Viscous diffusion of shear modes
 b. 1st and 2nd order hydrodynamics
- III. Contributions to correlation measurements

Transverse Momentum Fluctuations

small variations in transverse flow in each event

viscous friction as fluid elements flow past one another

shear viscosity drives velocity toward the average

$T_{zr} = -\eta \,\partial v_r / \partial z$

damping of radial flow fluctuations \Rightarrow viscosity

SG & Mohamed Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302

Fluctuations: Hydrodynamic Modes

Small fluctuations of the **momentum current**

- linearized 1st order Navier Stokes
- Helmholtz decomposition:

$$M_i \equiv T_{0i} - \left\langle T_{0i} \right\rangle$$

$$\vec{M} \equiv \vec{g} + \vec{h}$$
 for $\vec{\nabla} \cdot \vec{g} = 0$ and $\vec{\nabla} \times \vec{h} = 0$

viscous diffusion of

divergence-free modes:

kinematic

viscosity

$$\partial_t \vec{g} = v \nabla^2 \vec{g}$$

 $v = \eta / Ts$

curl free modes: **sound waves** – compression damped by viscosity **thermal diffusion** – heat flow relative to baryons Transverse Flow Fluctuations

transverse velocity fluctuations → shear modes

$$T_{0i} - \langle T_{0i} \rangle \approx g_i$$
 $T_{ji}^{diss} \approx -\eta \nabla_j v_i = -\nu \nabla_j g_i + \text{Langevin noise}$

diffusion equation for momentum current

$$\frac{\partial}{\partial t}g_i = v\nabla^2(g_i + \text{noise})$$

correlation function measures deviation of fluctuations from mean

$$r = \left\langle g_i(x_1)g_j(x_2) \right\rangle - \left\langle g_i(x_1) \right\rangle \left\langle g_j(x_2) \right\rangle$$

viscosity:SG & Abdel-Aziz, PRL 97 (2006) 162302baryon diffusion:SG & Abdel-Aziz, PR C70 (2004) 034905CME observables:Pratt, Schlichting, SG, PR C84 (2011) 024909

Noisy Diffusion

diffusion equation for momentum current

$$\frac{\partial}{\partial t}g_i = v\nabla^2(g_i + \text{noise})$$

difference equation

$$\Delta g = v \nabla^2 g \Delta t + \Delta W$$

$$\langle \Delta W \rangle = 0 \qquad \langle \Delta W(x_1) \Delta W(x_2) \rangle = \Gamma_{12} \Delta t$$

noise

Noise is Necessary for Equilibrium Fluctuations

noisy diffusion equation

 $\partial_t \langle g_1 g_2 \rangle = v \left(\nabla_1^2 + \nabla_2^2 \right) \langle g_1 g_2 \rangle + \Gamma_{12}$

noisy equilibrium state

 $v\left(\nabla_1^2 + \nabla_2^2\right) \left\langle g_1 g_2 \right\rangle_{eq} = \Gamma_{12}$

correlation function

$$r = \left\langle g_i(x_1)g_j(x_2) \right\rangle - \left\langle g_i(x_1) \right\rangle \left\langle g_j(x_2) \right\rangle$$
$$\rightarrow r_{eq} = (e+p)T\delta(x_1 - x_2)$$

BONUS:

 $\Delta r = r - r_{eq}$ satisfies deterministic diffusion equation

Gardiner, Handbook of Stochastic Methods, (Springer, 2002)

Measuring the Correlations

correlation function

 p_{τ}

observable:
$$C = \frac{1}{\langle N \rangle^2} \left\langle \sum_{\text{pairs}} p_i p_j \right\rangle - \langle p_i \rangle \langle p_j \rangle = \frac{1}{\langle N \rangle^2} \int (r - r_{eq}) dx_1 dx_2$$

assumes: proper-time freeze out

Abdel-Aziz & S.G., PRL 97 (2006) 162302; PR C70 (2004) 034905 Pratt, Schlichting, SG, Phys. Rev. C 84 (2011) 024909

p_t Covariance Measured

$$C = \frac{1}{\langle N \rangle^2} \left\langle \sum_{a \neq b} p_t^{\ a} p_t^{\ b} \right\rangle - \left\langle p_t \right\rangle^2$$

measured: rapidity width of near side peak

- fit peak + constant offset
- report rms width of the peak

find: width increases in central collisions $\sigma_{central} = 1.0 \pm 0.2$

$$\sigma_{\scriptscriptstyle peripheral} = 0.54 \pm 0.02$$

STAR: increase from peripheral to central $\Rightarrow \eta/s = 0.17 \pm 0.08$

NeXSPheRIO

- fits most aspects of correlations (ridge, v_n, etc.)
- **not** the increased width

ideal fluctuating hydro doesn't explain measured growth of width

Sharma et al., Phys. Rev. C84 (2011) 054915

What is the Bump?

Diffusion vs. Wave Motion

Diffusion (1st Order)

- Gaussian peak spreads
- tails violate causality

Wave propagation

- peak splits into left and right traveling pulses
- propagation speed v

2nd Order Viscous Diffusion

causal transport equation:

- transverse modes
- linearized Israel-Stewart

$$\left(\frac{\tau_{\pi}}{2}\frac{\partial^2}{\partial t^2} + \frac{\partial}{\partial t} - v\left(\nabla_1^2 + \nabla_2^2\right)\right)\Delta r = 0$$

relaxation time au_{π}

coordinate space:

- wave-fronts traveling at speed = $(v/\tau_{\pi})^{1/2}$
- diffusion-like behavior in between
- no peak at $\Delta z = 0$

 $\Delta r = r - r_{eq}$

2nd Order Viscous Diffusion in Rapidity

$$\left(\frac{\tau_{\pi}}{2}\frac{\partial^2}{\partial\tau^2} + \frac{\partial}{\partial\tau} - \frac{v}{\tau^2}\left(\frac{\partial^2}{\partial\eta_1^2} + \frac{\partial^2}{\partial\eta_2^2}\right)\right)\Delta r = 0$$

spatial rapidity

- rapidity separation of fronts saturates $\Delta\eta\sim\Delta z/\tau$
- profile depends on initial width σ_0

2nd Order Viscous Diffusion in Rapidity

$$\left(\frac{\tau_{\pi}}{2}\frac{\partial^2}{\partial\tau^2} + \frac{\partial}{\partial\tau} - \frac{v}{\tau^2}\left(\frac{\partial^2}{\partial\eta_1^2} + \frac{\partial^2}{\partial\eta_2^2}\right)\right)\Delta r = 0$$

spatial rapidity

- rapidity separation of fronts saturates $\Delta\eta\sim\Delta z/\tau$
- profile depends on initial width σ_0

1st vs. 2nd Order

2nd Order Works:

Classical Diffusion

ausal Diffusion

 σ_{RMS}

0.9

0.8

0.7

0.6

0.5

0

50

- Broader than Gaussian
- "Valley" appears in more central collisions

150

100

200

250

1st vs. 2nd Order

2nd Order Works:

Classical Diffusion

ausal Diffusion

 σ_{RMS}

0.9

0.8

0.7

0.6

0.5

0

50

- Broader than Gaussian
- "Valley" appears in more central collisions

150

100

200

Realistic 2nd Order Viscous Diffusion

Moschelli, Pokharel, S.G., in progress

average Bjorken flow temperature vs time:

entropy production:

relaxation equation: causality delays heating $\frac{ds}{d\tau} + \frac{s}{\tau} = \frac{\Phi}{T\tau} \qquad \qquad \tau_{\pi} = \beta v \qquad v = \eta / sT$ $\frac{d\Phi}{d\tau} = -\frac{1}{\tau_{\pi}} \left(\Phi - \frac{4\eta}{3\tau} \right) - \frac{\kappa}{\tau} \Phi \qquad \qquad \kappa = \frac{1}{2} \left[1 - \frac{d\ln(\tau_{\pi}/\eta T)}{d\ln s} \right]$

fluctuations:

$$\left(\frac{\tau_{\pi}^{*}}{2}\frac{\partial^{2}}{\partial\tau^{2}} + \frac{\partial}{\partial\tau} - \nu^{*}\left(\nabla_{1}^{2} + \nabla_{2}^{2}\right)\right)\Delta r = 0$$

$$\tau_{\pi}^* = \frac{\tau_{\pi}}{1 + \kappa \tau_{\pi} / \tau} \qquad v^* = \frac{v}{1 + \kappa \tau_{\pi} / \tau}$$

Progress

 GeV^2

Israel-Stewart fluctuations on Bjorken Background

- Lattice EOS HotQCD Collaboration
- Lattice viscosity Nakamura & Sakai
- Hagadorn HG Noronha-Hostler et al.

Progress

Israel-Stewart fluctuations on Bjorken Background

- Lattice EOS HotQCD Collaboration
- Lattice viscosity Nakamura & Sakai
- Hagadorn HG Noronha-Hostler et al.

 GeV^2

Measuring the Relaxation Time

Summary: rapidity dependence of p_t correlations

Hydro formulation: longitudinal and transverse modes

- Sound waves, shear modes, and heat modes
- Diffusive transverse shear modes important for rapidity dependence of p_t correlations
- 1st and 2nd order viscous fluctuating hydro description of shear modes

Causality shapes the rapidity dependence of correlations

- Shear viscosity → increase of rapidity width with centrality
- Relaxation time → "valley"

Open Questions

- Influence of sound and heat modes on observables
- Charge balancing, resonances, jets, HBT

Perhaps I can help you with that hump.

Noisy Diffusiondifference equation
$$\Delta g = v \nabla^2 g \Delta t + \Delta W$$
noise $\langle \Delta W \rangle = 0$ $\langle \Delta W(x_1) \Delta W(x_2) \rangle = \Gamma_{12} \Delta t$ variance $\Delta \langle g_1 g_2 \rangle = \langle g_1 \Delta g_2 \rangle + \langle \Delta g_1 g_2 \rangle + \langle \Delta g_1 \Delta g_2 \rangle$

$$= \nu \left(\nabla_1^2 + \nabla_2^2 \right) \left\langle g_1 g_2 \right\rangle \Delta t + \Gamma_{12} \Delta t$$

Noisy Diffusion

difference equation $\Delta g = v \nabla^2 g \Delta t + \Delta W$ noise $\langle \Delta W \rangle = 0$ $\langle \Delta W(x_1) \Delta W(x_2) \rangle = \Gamma_{12} \Delta t$ variance $\Delta \langle g_1 g_2 \rangle == \left(v \left(\nabla_1^2 + \nabla_2^2 \right) \langle g_1 g_2 \rangle + \Gamma_{12} \right) \Delta t$

diffusion equation for correlation function:

$$\frac{\partial}{\partial t} \langle g_1 g_2 \rangle = v \left(\nabla_1^2 + \nabla_2^2 \right) \langle g_1 g_2 \rangle + \Gamma_{12}$$

$$\Gamma_{12} = 2\nabla_1 \cdot \nabla_2 \eta T \delta(x_1 - x_2)$$

Covariance Measures Momentum Flux

covariance

$$C = \frac{1}{\langle N \rangle^2} \left\langle \sum_{\text{pairs } i \neq j} p_{ti} p_{tj} \right\rangle - \langle p_t \rangle^2$$

unrestr

unrestricted sum:

$$\begin{aligned}
\sum_{alli,j} p_{ti} p_{tj} &= \int p_{t1} p_{t2} dn_1 dn_2 \\
&= \int dx_1 dx_2 \Big(\int dp_1 p_{t1} f_1 \Big) \Big(\int dp_2 p_{t2} f_2 \Big) \\
&= \langle N \rangle^2 \langle p_t \rangle^2 + \int g(x_1) g(x_2) dx_1 dx_2
\end{aligned}$$

 $r_g = \langle g_t(x_1)g_t(x_2) \rangle - \langle g_t(x_1) \rangle \langle g_t(x_2) \rangle$ correlation function:

$$\int r_g dx_1 dx_2 = \left\langle \sum p_{ti} p_{tj} \right\rangle - \left\langle N \right\rangle^2 \left\langle p_t \right\rangle^2 = \left\langle \sum p_{ti}^2 \right\rangle + \left\langle N \right\rangle^2 C$$

C=0 in equilibrium

$$C = \frac{1}{\langle N \rangle^2} \int (r_g - r_{g, eq}) dx_1 dx_2$$

Hydrodynamic Modes

"transverse" modes $\vec{\nabla} \cdot \vec{g} = 0$

viscous diffusion

$$\partial_t \vec{g} = v \nabla^2 \vec{g}$$

- no transverse `sound waves'
- kinematic viscosity $v = \eta / Ts$
- vorticity $\vec{\omega} \propto \vec{\nabla} \times \vec{g}$

longitudinal modes $\vec{\nabla} \times \vec{g}_L = 0$ $\partial_t \vec{g}_L + \vec{\nabla} p = \frac{\frac{4}{3}\eta + \zeta}{sT} \vec{\nabla} (\vec{\nabla} \cdot \vec{g}_L)$

longitudinal modes + energy and baryon conservation imply:

sound waves – compression waves, damped by viscosity **thermal diffusion** – heat flow relative to baryons

Momentum in Fluctuating Hydrodynamics

momentum current – small fluctuations

$$M_i \equiv T_{0i} - \left\langle T_{0i} \right\rangle \approx (e+p)v_i \approx sTv_i$$

momentum conservation – linearized Navier-Stokes

$$\partial_t M_i + \nabla_i p = \frac{\eta / 3 + \zeta}{sT} \nabla_i (\vec{\nabla} \cdot \vec{M}) + \frac{\eta}{sT} \nabla^2 M_i$$

Helmholtz decomposition:

on: $\vec{M} \equiv \vec{g}_L + \vec{g}$

"longitudinal" mode: $\vec{\nabla} \times \vec{g}_L = 0$ "transverse" modes: $\vec{\nabla} \cdot \vec{g} = 0$

Hydrodynamic Momentum Correlations

momentum flux density correlation function

$$r = \langle g_r(x_1)g_r(x_2) \rangle - \langle g_r(x_1) \rangle \langle g_r(x_2) \rangle$$

 r_{eq}

spatial rapidity

$\Delta r = r - r_{eq}$ satisfies deterministic diffusion equation Gardiner, Handbook of Stochastic Methods, (Springer, 2002)

fluctuations diffuse through volume, driving $r \rightarrow$

width in relative spatial rapidity grows from initial value σ_0

$$\sigma^2 = \sigma_0^2 + 4 \frac{\eta}{Ts} \left(\frac{1}{\tau_0} - \frac{1}{\tau} \right)$$