

# Discussion on Q4 aperture

G. Arduini, R. De Maria, M. Fitterer, M. GiovannozziThanks to, C. Garion, S. Fartoukh, P. Fessia,C. Magnier, H. Prin, E. Todesco, B. Vasquez De Prada





# Aperture margins

- 1. Layout and optics define nominal orbit and beam sizes.
- 2. Geometry of the vacuum system (e.g. beam screens inner dimensions with tolerances).
- 3. Operational tolerances on beam size are added to the actual beam size.
- 4. Alignment and fiducialization tolerances are subtracted from available aperture.
- 5. The difference in units of beam sigma is calculated and compared with the aperture protected by the collimation systems

#### Aperture triplet region

Octagonal beam screens for triplets/D1 with tungsten shielding have been designed.

Expected straightness: 0.5 mm

Shape tolerance: ± 1 mm (C. Garion 12/06/2015), to be confirmed by the prototype.

The possibility of reducing the tungsten layer thanks to alternating crossing planes (F. Cerutti, S.

Fartoukh) should be checked.



| Element  | H or V gap<br>[mm] | 45° gap<br>[mm] |
|----------|--------------------|-----------------|
| Q1       | 102-1.5            | 102-1.5         |
| Q2-Q3-CP | 122-1.5            | 114-1.5         |
| D1       | 122-1.5            | 114-1.5         |



#### Aperture D2-Q4-Q5

New D2-Q4 octagonal beam screens have been designed, **no tolerances given, yet**.

Q5 beam screens (RectEllipse) oriented for collision optics aperture optimizations.

Same triplet tolerances removed from the mechanical dimensions.

| Element | H or V gap<br>[mm] | 45° gap<br>[mm]  |
|---------|--------------------|------------------|
| MBRD    | 87.0-1.5           | 78.0 <b>-1.5</b> |
| MQYY    | 78.5 <b>-1.5</b>   | 63.8-1.5         |
| Q5      | 57.8, 48.0         |                  |



C. Garion, no tolerances included





### Beam tolerances and collimation protection

# Beam tolerances have been redefined by:

- Taking into account LHC Run I successful experience
- Adding safety margins based on possible unknowns.

#### For collimation:

- magnet protected by TCT: ≥ 12 σ
- magnet not protect by TCT:  $18 \sigma^{(2)}$  or possibly less, pending dedicated studies (R. Bruce).

| Beam Tolerance                      | LHC DR<br>Inj./Coll. | HL-LHC<br>Inj./Coll.                         |
|-------------------------------------|----------------------|----------------------------------------------|
| Emittance [µm] (normalization only) | 3.75/3.75            | 3.5/3.5                                      |
| β-beating [%]                       | 20/20                | 10/20                                        |
| Orbit error [mm]                    | 4/3                  | 4/2                                          |
| Spurious Disp. [%]                  | 27.3/27.3            | 14/10                                        |
| Δp/p [10 <sup>-4</sup> ]            | 15/8.6               | 6/2                                          |
| Target aperture [σ]                 | 8.4/8.4              | 9 <sup>(1)</sup> /12<br>(18 <sup>(2)</sup> ) |

R. Bruce et al., CERN-ACC-2014-0044

Minimum aperture not protected by TCT in collision and aperture targets at injection should be confirmed by WP5<sup>(2)</sup> and WP14<sup>(1)</sup>.



## Aperture vs optics for baseline

|             | Round<br>15 cm | Round<br>20 cm | Flat<br>7.5 cm | Flat<br>10 cm |
|-------------|----------------|----------------|----------------|---------------|
|             | [σ]            | [σ]            | [σ]            | [σ]           |
| TAXS        | 9.9            | 12.1           | 9.6            | 11.3          |
| MQXFA.[AB]1 | 13.2           | 16             | 12.3           | 14.2          |
| MQXFB.[AB]2 | 9.4            | 11.7           | 9.7            | 11.2          |
| MQXFA.[AB]3 | 9.5            | 11.8           | 10             | 11.6          |
| MBXF        | 10.7           | 13.1           | 10.6           | 12.3          |
| TAXN        | 11.6           | 13.8           | 9.5            | 11.0          |
| MBRD        | 13.1           | 15.3           | 11.1           | 12.8          |
| MCBRD       | 16             | 18.7           | 13.7           | 15.4          |
| MCBYY       | 15.4           | 17.9           | 13.4           | 15.5          |
| MQYY        | 16.3           | 18.9           | 13.9           | 16.1          |
| TCLMB.5     | 20.3           | 23.5           | 14.5           | 16.8          |
| MCBY[HV].5  | 20.6           | 23.9           | 15             | 17.3          |
| MQY.5       | 21.4           | 24.7           | 15.3           | 17.7          |
| TCLMC.6     | 21.2           | 24.6           | 15             | 17.4          |
| MCBC[HV].6  | 24.7           | 28.5           | 17.4           | 20.1          |
| MQML.6      | 21.8           | 25.2           | 15.7           | 18.1          |

Aperture includes worst case scenarios for all knobs (IP crossing, separation, offset, crab cavity offset) assuming linear addition

Aperture in the triplets can be recovered by:

- reducing beam screen/cold bore tolerances, shielding thickness (see US-LARP presentation)
- reducing crossing angle (round optics) and separation (flat optics) if one assumes that  $\beta^*$  levelling is feasible

#### This allows:

- more aperture in the triplet at constant β\* or
- more performance if matching section keeps present margins.

## Q4 options

Aperture includes worst case scenarios for all knobs: IP crossing, separation, offset, crab cavity offset (assuming linear addition).

|       | Coil<br>aperture | Beam¹<br>aperture | H,V <sup>2</sup> full<br>gaps | Round<br>15 cm | Round<br>20 cm | Flat<br>7.5 cm | Flat<br>10 cm |
|-------|------------------|-------------------|-------------------------------|----------------|----------------|----------------|---------------|
|       | [mm]             |                   | [mm]                          | [σ]            | [σ]            | [σ]            | [σ]           |
| MCBYY | 90               | Octagon           | 73.8,73.8                     | 15.4           | 17.9           | 13.4           | 15.5          |
| MQYY  | 90               | Octagon           | 73.8,73.8                     | 16.3           | 18.9           | 13.9           | 16.1          |
| MCBYY | 80               | Octagon           | 63.8,63.8                     | 11.6           | 13.5           | 10.1           | 11.7          |
| MQYY  | 80               | Octagon           | 63.8,63.8                     | 12.3           | 14.2           | 10.5           | 12.1          |
| MCBY  | 70               | RectEllipse       | 57.8,48                       | 11.8           | 13.7           | 8.4            | 9.8           |
| MQY   | 70               | RectEllipse       | 57.8,48                       | 13             | 15.1           | 9.2            | 10.6          |

- We exclude the option MQY for robust flat optics operations.
- MQYY at 80 mm is not sufficient to provide enough flexibility:
  - Any improvement in triplet aperture would be useless if Q4 aperture is degraded.
  - If Q4 needs to be pushed towards D2 more aperture is needed (about 0.7  $\sigma$ ).
  - In case of operation at 6.5 TeV.
  - The use of a Rectellipse beam screen can help recovering aperture, but only in specific cases: freezing optics constraints or crossing plane.

Impact of energy deposition needs to be re-evaluated in case of reduction of coil

aperture

# Q4: MQY with 70 mm coils



Q4 with MQY not ok.



#### Q4: MQYY with 80 mm coils



MQYY with 80mm coil not OK. RectEllipse option can help only for special cases.

#### Q4: MQYY with 90 mm coils



Q4 with MQYY: OK.



#### Conclusions

- Aperture margins have been reviewed from LHC DR based on Run I experience and applied to HL-LHC design.
- The most complete set of tolerances on beam parameters has been worked out.
- Some mechanical tolerances are still missing for a final aperture evaluation.
- Concerning Q4 aperture:
  - MQY is not compatible with target aperture for flat optics.
  - MQYY with lower-than-baseline aperture downgrades the overall performance and the energy deposition should be re-evaluated.



# Spare slides



# Survey tolerances

|          | Ground          | d motio | n         | Fiducializaton |           |     |  |
|----------|-----------------|---------|-----------|----------------|-----------|-----|--|
|          | r h v [mm] [mm] |         | r<br>[mm] | h<br>[mm]      | v<br>[mm] |     |  |
| TAXS (*) | 2.0             | 0       | 0         | 0              | 0.5       | 0.5 |  |
| Triplets | 0.6             | 0       | 0         | 0              | 1.0       | 1.0 |  |
| BPMs     | 0               | 0       | 0         | 2.5            | 0         | 0   |  |
| TAXN (*) | 0.84            | 0.36    | 0         | 0              | 1.0       | 1.0 |  |
| D1       | 0.6             | 0.36    | 0         | 0              | 1.0       | 1.0 |  |
| D2/Q4/Q5 | 0.84            | 0.36    | 0         | 0              | 0.9       | 0.6 |  |



Values by J. Jeanneret, LHC report 1007 as from nominal LHC To be validated by survey, WP3, WP8 (\*) teams



#### Orbit correction knobs

- IP crossing, separation, offset (x: ±295 μrad, , s: ±0.75 mm,
   o: ±2.0 mm)
- Beam based alignment of crab cavities:
  - ccp, ccm (shift): ±0.5 mm
  - ccs (slope): ±0.25 mm
- IT alignment and transfer function errors (err):
  - ±0.5 mm transverse,
  - ±10 mm longitudinal,
  - ±2x10<sup>-3</sup> relative gradient error,
- D2 relative field error: ±2x10<sup>-3</sup>
- Orbit correction from the arc (to confirmed): arc 0.7 Tm;
- Lumi scan knobs (single beam IP shift for 100 μm)



#### Effect of the knobs

|             | Coil     | Beam¹       | H,V²full  | Sep. | Crossing | Crab shift | Crab slope | Offset |
|-------------|----------|-------------|-----------|------|----------|------------|------------|--------|
|             | aperture | aperture    | gaps      | knob | Knob     | knob       | knob       | knob   |
|             | [mm]     |             | [mm]      | [mm] | [mm]     | [mm]       | [mm]       | [mm]   |
| TAXS        | 54       | Circle      | 54, 54    | 0.8  | 6.1      | 0.0        | 0.0        | 2.0    |
| MQXFA.[AB]1 | 150      | Octagon     | 102, 102  | 0.8  | 11.2     | 0.0        | 0.0        | 2.4    |
| MQXFB.[AB]2 | 150      | Octagon     | 122, 122  | 1.2  | 16.7     | 0.2        | 0.0        | 3.6    |
| MQXFA.[AB]3 | 150      | Octagon     | 122, 122  | 0.8  | 16.6     | 0.4        | 0.0        | 2.8    |
| MBXF        | 150      | Octagon     | 122, 122  | 0.5  | 15.5     | 0.5        | 0.0        | 2.4    |
| TAXN        | n/a      | Circle      | 80, 80    | 0.2  | 5.5      | 0.9        | 0.0        | 3.0    |
| MBRD        | 105      | Octagon     | 87, 87    | 0.1  | 3.3      | 1.0        | 0.0        | 3.3    |
| MCBRD       | 105      | Octagon     | 87, 87    | 0.1  | 1.7      | 1.0        | 0.1        | 3.4    |
| MCBYY       | 90       | Octagon     | 73.8,73.8 | 0.0  | 0.1      | 1.0        | 0.5        | 4.0    |
| MQYY        | 90       | Octagon     | 73.8,73.8 | 0.0  | 0.0      | 1.0        | 0.5        | 3.9    |
| TCLMB.5     |          | RectEllipse | 57.8, 48  | 0.0  | 0.0      | 0.4        | 0.2        | 3.7    |
| MCBY[HV].5  | 70       | RectEllipse | 57.8, 48  | 0.0  | 0.0      | 0.0        | 0.0        | 3.6    |
| MQY.5       | 70       | RectEllipse | 57.8, 48  | 0.0  | 0.0      | 0.2        | 0.1        | 3.5    |
| TCLMC.6     | 56       | RectEllipse | 45.1,35.3 | 0.0  | 0.0      | 0.0        | 0.0        | 2.3    |
| MCBC[HV].6  | 56       | RectEllipse | 45.1,35.3 | 0.0  | 0.0      | 0.0        | 0.0        | 2.1    |
| MQML.6      | 56       | RectEllipse | 45.1,35.3 | 0.0  | 0.0      | 0.0        | 0.0        | 2.1    |

<sup>&</sup>lt;sup>1</sup>Either Beam screen or beam pipe;

<sup>&</sup>lt;sup>2</sup> Rectellipse types are exchanges the H,V orientation depending on the polarity

#### Q1

#### Round



#### Flat



Q1 OK



#### Q2

#### Round



#### Flat



Q2 OK

