

Spectrometer Solenoid Recovery: Options for Moving Forward

Mark Palmer Fermilab October 26, 2015 [with added slide 13]

Introduction

- As noted, SSD-M1 failed during magnet training quench on September 13, 2015
- Critical Questions for Moving Forward:
 - 1. Can we operate MICE Step IV with the SSD as is?
 - The August 2014 re-baseline constrained the optics to the extent that we do not believe that the Cooling Demonstration configuration can operate without restoring the lost match coil functionality
 - 2. Do we have a viable path to repair the magnet?
 - 3. How long is a repair or alternative mitigation? And can it fit within the time frame (by end US FY17) for deploying the cooling demonstration?
 - 4. What is the required cost of a repair or alternative mitigation? Does it fit within the contingency held within the US construction budget?
 - 5. Given the known "features" of the SS magnets (e.g. training behavior), are there steps in a repair that can significantly mitigate risk, overall experimental schedule, training schedule, and/or training costs?

- Addressing the Key Questions
 - 1. Step IV?
 - 2. Repair Path?
 - 3. Schedule?
 - 4. Cost?
 - 5. Risks?
- Potential Technical Paths Forward
- Process Moving Forward
- Conclusion
- ➡ Discussion

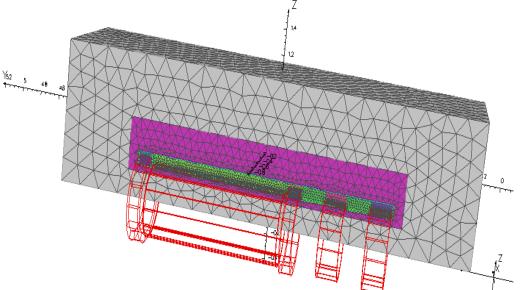
1. Step IV?

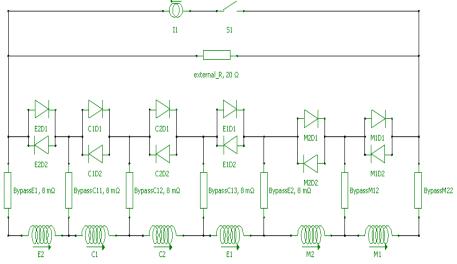
Can we operate MICE Step IV with the SSD as is?

- Optics designs sufficient for characterizing absorber materials are in hand (assuming SSD M2 coil is operational):
 - Critical SSD checks:
 - SSD E-C-E quench and reasonable response of vessel
 - ➡ He vessel and feedthrough integrity satisfactory
 - SSD M2 low current checkout
 - ⇒ No anomalous resistive behavior observed
 - Next step is a careful ramp to high current
 - ⇒ Viable optics and likely viable magnet with M2 and E-C-E coils
- Plan is to proceed with modified Step IV run plan for ~1 year
 - ⇒ Time to prepare for a repair

Answer: YES

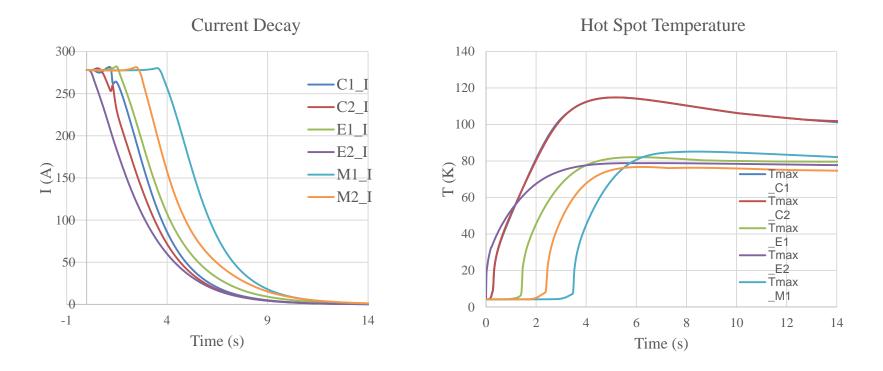
- Caveats:
 - Still need to validate magnet at currents required by alternative optics
 - Need to confirm that we have a power supply configuration that is "safe" for operations




PSU Configuration (Preliminary)

Heng Pan (LBNL)

- Quad model built in VF
- Quench initiated in the inner layer of the E2 coil.


- All coils are powered by a single powers supply.
- A 20 Ω external resistor goes across all the coils.
- Switch opened when the overall voltage across the E2 coil exceeds 0.2V.

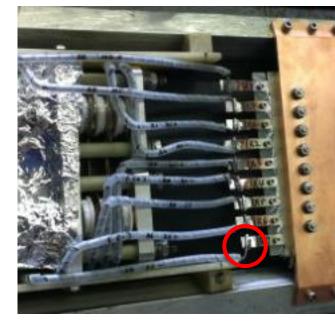
Current Decay & Hot Spots

Heng Pan (LBNL)

• C coil also has the highest hot spot temperature among the coils.

2. Repair Path?

Do we have a viable path to repair the magnet?


Both magnets previously rebuilt

YES

- One previous failure very similar in scope to present case
- A plausible repair path exists based on previous repair and our present understanding of the September 13th failure

Answer:

 Remaining question is whether a repeat of that rebuild is a "sufficient" and/or best option

- Proposals to build an "improved" bobbin
 - Build and test prior to removal of magnet from channel (risk reduction)
 - Vacuum impregnated coils (vs. wet layup)
 - Active quench protection (heaters)
- Insert separate function magnet in lieu of repair

Schedule?

- Baseline estimate of repair schedule:
 - Based on prior experience with previous repairs
 - Assume magnet available (i.e. warm and ready to remove from channel) on August 1, 2016
 - Base estimate for disassembly, cold mass repair and reassembly:
 8 months base + 3 months contingency
 - 8 months base + 3 months contingency
 - Transport: 1.5 months (if repair not carried out locally)
 - Installation, pump-down, cool-down and training at RAL (assuming optimal installation/commissioning support): 2 months
 - ➡ October 15, 2017

Answer: MAYBE

- Baseline Repair (*very preliminary*)
 - Air Shipment (required to achieve schedule): \$100K rnd-trip
 - Cold mass removal, repair, re-installation:
 \$700K base cost +35% contingency = \$950K
 - LHe costs (cool-down+training):
 18 x 500L x 7000GBP/dewar x 1.55\$/GBP = \$200K
 - Misc. other costs = 100K
 - Total: ~\$1.35M
- US Funding Availability
 - In \$18M FY15-17 ramp-down plan, US project has ~\$1.3M in unallocated management reserve
 - Potentially would be forced to reduce US experimental support in FY17 (particularly since no experimental running would take place)

Answer: Probably

- Do we have a safe way to operate the two spectrometer solenoids as presently configured (assuming no further QA issues)? Maybe
- Can risks be mitigated by the repair strategy?
 - Re-do SSD cold-mass QA (except for winding)
 - Improve stabilization of existing leads/bus work
 - Add additional protection features

Yes

 By addressing the above issues, do we convince ourselves that the magnet will be robust in operation? Maybe

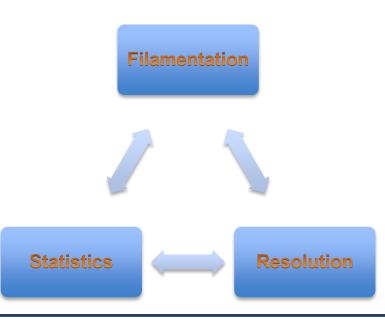
Overall Answer: Maybe

POTENTIAL TECHNICAL PATHS FORWARD

October 26, 2015

Mark Palmer | Spectrometer Solenoid Review (RAL, October 26, 2015)

Option 1 – Repeat previous repair scenario

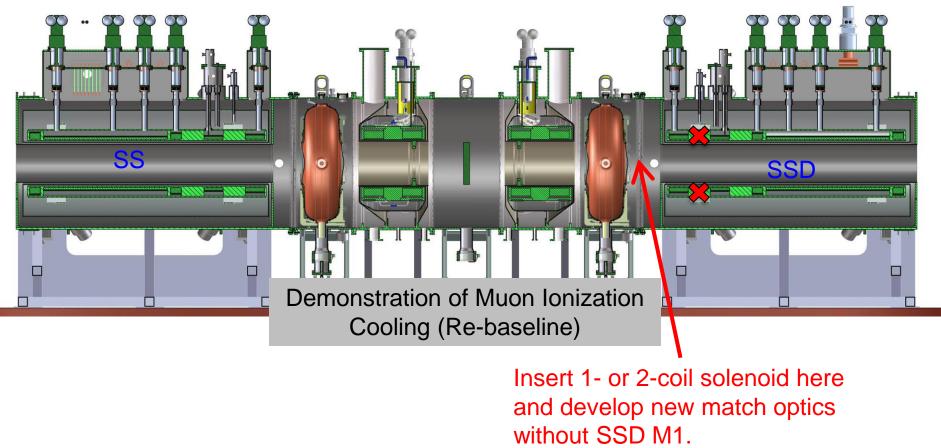

Assumptions

- NO changes to magnet design
- Repair starts at conclusion of Step IV running
- Suitable repair team available magnet moved to team location
- Schedule
 - Magnet could be at RAL for installation/commissioning prior to end of US FY17. Would fully become RAL responsibility at end of US FY17.
- Cost
 - Nominally appears to use 100% of MAP management reserve funds. Plausible.
- Risk
 - QA issues (believed to be known) could be addressed
 - Surprises when cold mass is inspected?
 - Are we comfortable with sticking to the current design untouched?

- NOTE: You may hear a so-called "Option 0" referred to which is:
 - Run the Cooling Demo with SSD "as is".
 - I don't believe the optics team has any solution with the capability to achieve the Cooling Demo goals – for instance:

October 26, 2015

- Option 2 Fabricate new cold mass
 - Assumptions
 - Only allow modest changes to cold mass design
 - Examples:
 - » Minor change in bobbin length to control thermal distortion
 - » Allow for vacuum-impregnation of coils
 - » Allow for addition of active quench heaters
 - Integration with existing cryostat starts at conclusion of Step IV running
 - All required superconductor is on hand (enough SC is in FNAL storage to wind 2 new cold masses)
 - Schedule
 - Cold mass fabrication could start as soon as revised drawings approved.
 - Budgetary quote from AI forging vendor indicates 10 week delivery.
 - With SC on hand, new cold mass could be machined, wound and outfitted before August 1, 2016 (preliminary estimate of 8 months)
 - Potentially could be cold-tested/trained in dewar in advance of August 1, 2016 (a realistic schedule needs to be confirmed)
 - Could also be carried out while magnet disassembly under way
 - Final Installation
 - Installation of prepped cold mass would likely save ~2 months in baseline disassembly/reassembly schedule for magnet (vs. slide 8)
 - A trained cold mass would likely save ~3 weeks in training time (vs. slide 8)
 - Consistent with completion before end of US FY17



- Option 2 (cont'd) Fabricate new cold mass
 - Cost
 - Very preliminary estimate of \$500K to prepare a new cold mass with SC on hand
 - Would we want to wind 2 cold masses as risk mitigation???
 - Would still require most of the \$700K base cost estimate to disassemble/reassemble the magnet
 - Risk
 - A chance to address identified risks with minimal modifications
 - Testing before installation would provide certainty however, only one chance is realistic unless 2 bobbins are prepped
 - Opportunity Potential reduction in training costs (save ~\$150K)
 - Opportunity Possibility of retrofitting existing SSD cold mass as a spare after SSD repair complete

 Option 3 – Do NO repair and instead insert another solenoid in the cooling channel

- Option 3 (cont'd)
 - Assumptions
 - Magnet can handle longitudinal forces of cooling channel
 - Magnet cryostat can be modified for integration into cooling channel
 - Magnet bore is sufficiently large
 - Magnet cooling can be managed in the RAL Hall (Is there a magnet available which can be operated without a refrigerator system?)
 - Schedule
 - One year to prep magnet
 - One year to prep PRY modifications
 - Installation should be fast
 - Cost
 - Would require further modification to the PRY extension
 - Would require additional design and fabrication work to integrate the new magnet
 - Risk
 - Modest as long as both SSU and SSD operating reasonably thru Step IV

Possibilities: MuCool Test Area Magnet; new FC

- Option 4 Cut SSD open and repair
 - Assumptions
 - Would require acquisition of used refrigerator because thermal losses likely to exceed what could be handled with cryocoolers
 - Would require modifications to work with refrigeration system
 - Schedule
 - Relatively fast assuming that refrigeration system could be installed/commissioned during Step IV running
 - Costs
 - TBD
 - Utilize surplus refrigerator system to control overall costs
 - Risks
 - Not clear that this could be done safely without damaging the cold mass support structure

- Option 5 Construction of new SS magnet
 - Assumptions
 - Would allow for implementation of (some) lessons learned
 - Would not allow for a major change in configuration to a more reliable magnet style (e.g. high current SC cable with refrigerator)
 - Schedule
 - Difficult to imagine a scenario, with proper contingency assessment, that could deliver a magnet in time
 - Costs
 - Difficult to imagine a scenario where costs would not be significantly higher than a simple repair
 - Risks
 - Depending on scale of modifications from present design, would require an entirely new test program

Any other ideas???

October 26, 2015

- We have just recently finished the initial assessment of SSD
 - Reasonable confidence that we have a selfconsistent understanding of the failure
 - Full confidence not achievable until we are able to inspect the cold mass directly
- We are presently assembling the information required for a full technical evaluation of repair options
 - Initial considerations are "wide open"
 - By mid-November must have a focused and realistic recovery plan

- Next Step:
 - Technical Review targeted at November 23-24 at FNAL
 - Identify the desired baseline recovery plan
 - Preliminary cost
 - Preliminary schedule
 - Identification of required magnet team
 - Target at least one alternate plan
 - Have 1 session of open discussion (avoid missed options)
 - Fully document baseline option to submit to MPB subcommittee on the mid-December timescale
 - Present resource-loaded schedule and full risk assessment
 - Obtain approval to move forward
 - May need preliminary approval for long lead items

Conclusion

- 3 critical areas:
 - Cost
 - Schedule
 - Risk mitigation
- Executing a repair similar to those done previously nominally fits within the US program's constraints
- Looking forward to the committee's comments on the possible routes presented
 - Need guidance for what to prepare for the November technical review

NOW OPEN FOR DISCUSSION

October 26, 2015

Mark Palmer | Spectrometer Solenoid Review (RAL, October 26, 2015)