Study of Dynamic Aperture of Shielded Solenoids using Symplectic Maps

Max McGinley

Solenoid Fringe Fields

- Leakage of *B* field outside of solenoid
- Shield solenoid to reduce field

 Quenching of neighbouring solenoids
- Affects beam dynamics...

Solenoid Dynamics

- Lagrangian $\mathcal{L} = -\gamma m_0 c^2 + q \vec{v} \cdot \vec{A}$
- Rotational symmetry
 - Vector potential \vec{A} has the expansion

$$-A_z = A_r = 0;$$
 $A_{\phi} = R(r^2)Z(z)$

- -R always same. Entirely specified by Z(z)
- Hamiltonian $H = \sqrt{m^2 + (p_x qA_x)^2 + (p_y qA_y)^2 + p_z^2}$ $- p_x = \gamma m_0 \dot{x} + qA_x$
- Conservation of Canonical Angular momentum

$$-L_{canon} = xp_y - yp_x$$

Solenoid Dynamics

- Expand H up to 4^{th} order in x, y, p_x , p_y
- Many terms...

- 2 terms depend on
$$b_2 = \frac{\partial^2 B}{\partial z^2}$$

- Sharp field yields high b_2
- Shielding \rightarrow greater nonlinear effects
- Study beam stability

Method

- Use a transfer map to look at emittance growth
- Map must conserve expected quantities
 - Energy, canonical momentum...
 - Artificial emittance growth
- Can constrain map for each quantity
 - Causes unexpected behaviour
- Solution: Symplectic Maps

Symplectic Maps

- Any map that preserves Poisson brackets
 [Mf, Mg] = M[f, g]
- Conserves Hamilton's eq.s of motion

No artificial energy growth

• $J^T \Omega J = \Omega, M$ is Jacobian

$$-\Omega = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} = \begin{bmatrix} u^i, u^j \end{bmatrix}_{PB}$$

• Large number of non-linear conditions on M

Symplectic Maps

- Instead use Lie algebraic techniques (Dragt, 1988)
 - Symplectic Maps form a Lie Group
 - Can be generated through Lie algebraic elements
- Dragt shows that $\dot{M} =: -H: M$
 - $-:f:g=[f,g]_{PB}$
 - Think of a "tangent map" at the identity

Lie Algebraic Techniques

• exp : Lie algebra -> Lie group

• exp:
$$f: = 1 + f: + \frac{f:^2}{2!} + \cdots$$

• Use factorisation theorem

$$-M = \cdots M_3 M_2 M_1$$

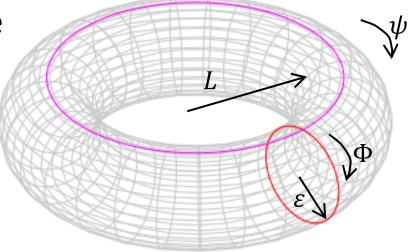
= \dots exp: f_4: exp: f_3: exp: f_2:

- Homogenous polynomials f_i
- Related to Hamiltonian expansion

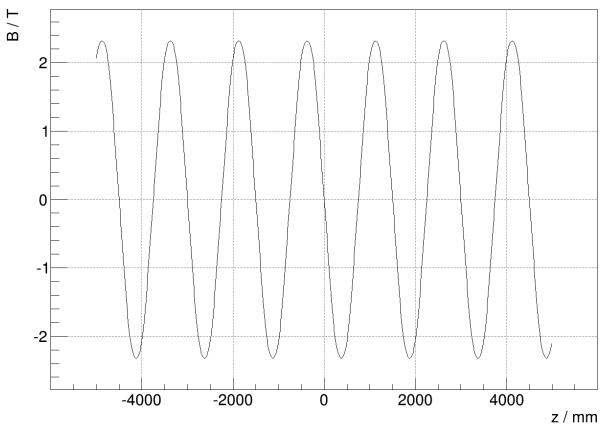
$$-H = H_2 + H_3 + H_4 + \cdots$$

Expected Behaviour

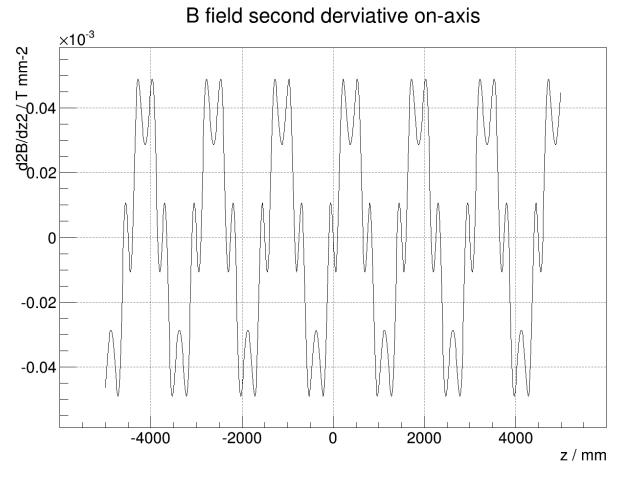
- Perturbation on phase space ellipse
- Terms $1+: f: + \frac{:f:^2}{2!} + \cdots$ include 1^{st} , 3^{rd} , 5^{th} ... order terms
- As 5th order terms come in, loose accuracy
 - Make plots in ϵ - Φ plane - Vary L



B-Field on-axis

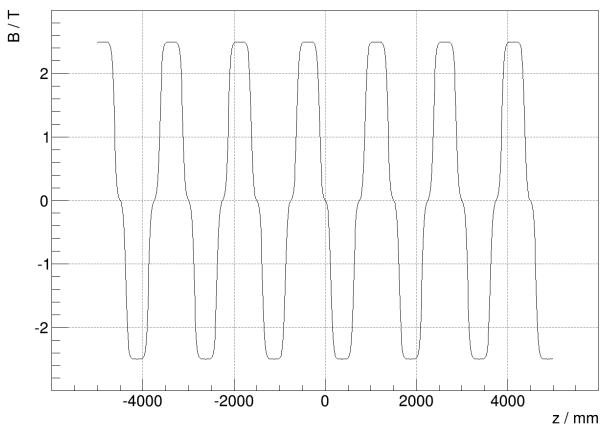


 $\lambda = 150$ mm



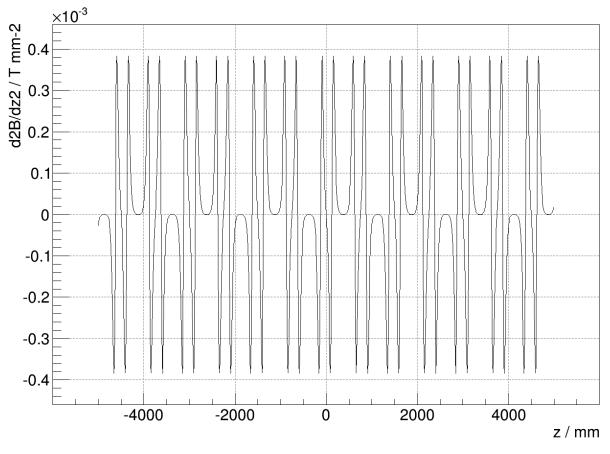
 $\lambda = 150$ mm

B-Field on-axis

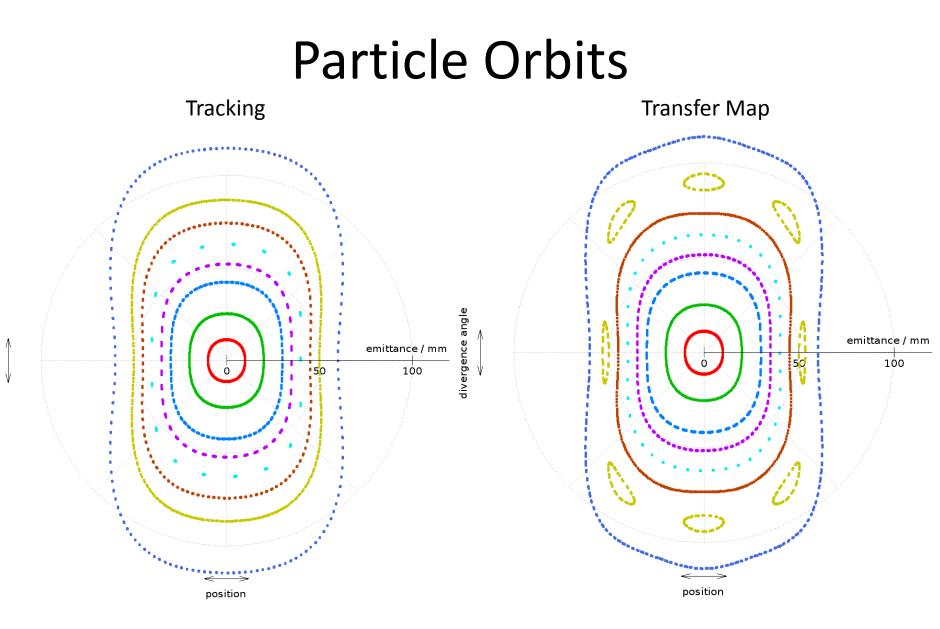


 $\lambda = 50$ mm

B field second derviative on-axis



 $\lambda = 50$ mm



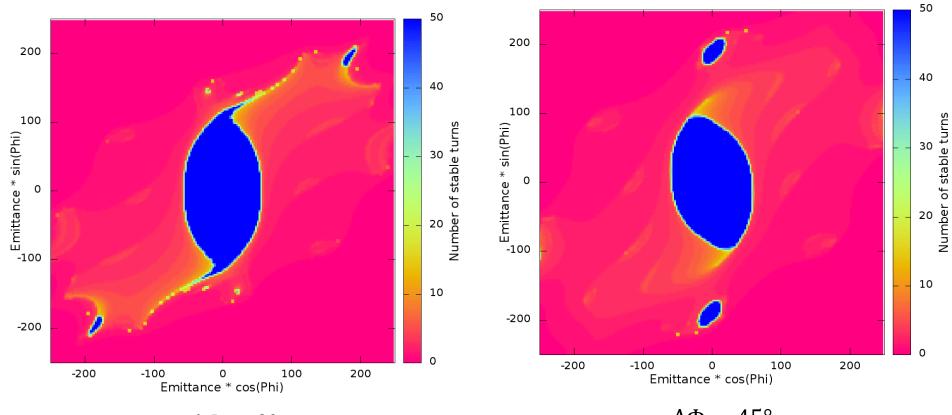
 $\lambda = 500$ mm, cell length = 750mm, $B_{\text{peak}} = 2.5$ T, L = 0, $p_z = 200$ MeV/c

divergence angle

Higher Order Terms

- Does third order behaviour give accurate picture of stability?
 - Compare to tracking slow
 - Approx 2,000,000 cells to track through
 - To be completed
 - For high b_2 , instability comes in before 5th order terms
 - Useful for studying shielding...

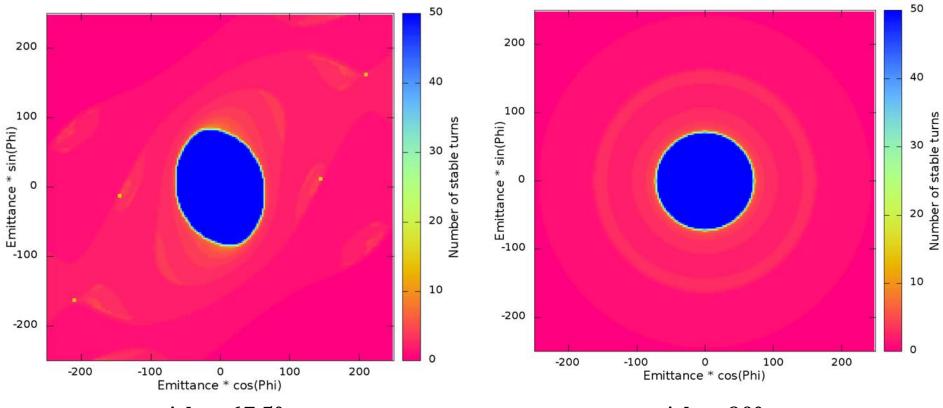
Stability



 $\Delta \Phi = 0^{\circ}$

 $\Delta \Phi = 45^{\circ}$

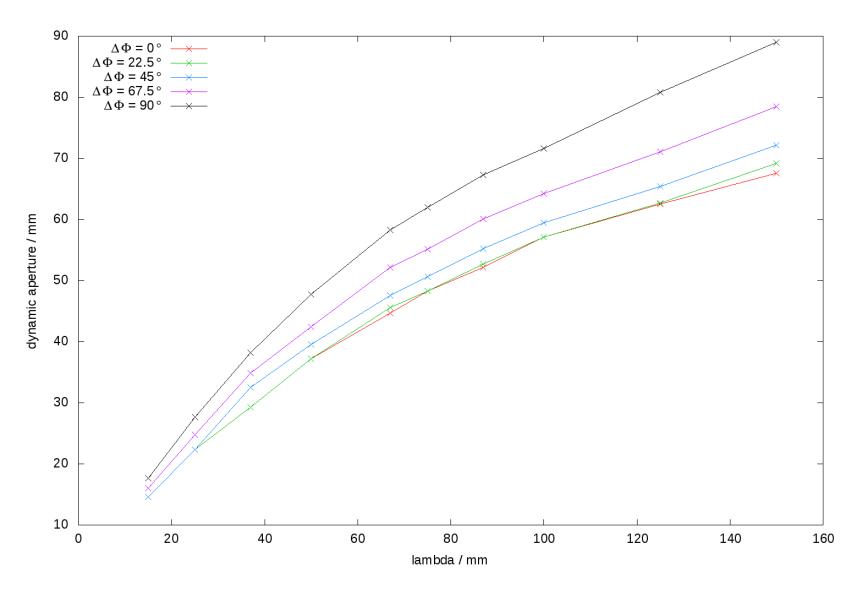
Stability



 $\Delta \Phi = 67.5^{\circ}$

 $\Delta \Phi = 90^{\circ}$

Effect of Shielding on Dynamic Aperture



Extension to Different Geometries

- Third order terms of order $\frac{x^3b_2q}{p_z}$
- In terms of λ lattice:

$$-\lambda_{unstable} \propto b_{peak} q \left(\frac{a^2 \epsilon^3 \beta^3}{p_z}\right)^{\frac{1}{4}}$$

 $-\beta$ Twiss parameter

Improvements

• Fifth order addition

Involved quadruple integrals

- Convergence of exponential
 - Polynomials $f_i \sim 10$
 - Split and use symplectic integrator?

Thanks!

Questions?