Tracker to Solenoid Alignment

C. Rogers, ASTeC Intense Beams Group Rutherford Appleton Laboratory

Tracker to Solenoid Alignment

Aim is to measure the tracker tilt angle wrt solenoid field

Magnet Mapping – Plan (CM42)

Magnet Mapping – Elevation (CM4 10 SSD Warm Bore 8 SSU Probe axis Flange centre SSD 6 of this ta ole for the o SSD Magnetic axis 4 SSU Magnetic axis FC Flange Centres 2 z (mm) 0 14.0 15.0 16.0 17.0 19.0 13.0 18.0 20.0 21.0 -2 8.5 mm -4 Magnetic -6 axis Magnetic axis -8 -10 X (m) J. Cobb, V. Blackmore

Algorithm

- Tracks make a helix through the field
- Projection onto solenoid x-y is a circle
- Use polynomial expansion for a circle

•
$$R^2 = (x - x_0)^2 + (y - y_0)^2$$

- Transform to tracker coordinate system (u, v, w)
 - Small angle approximation
 - $R^2 = (u + \Theta_x w x_0)^2 + (v + \Theta_y w y_0)^2$
- Expand and divide through by constant term
 - { $-2x_0u 2y_0v + (u^2 + v^2) + 2\Theta_xwu + 2\Theta_ywv 2(y_0\Theta_y + x_0\Theta_x)w$ }/a₂ = 1

•
$$a_2 = R^2 - x_0^2 + y_0^2$$

- This is a sum of polynomial terms; we can fit track by track using linear least squares
- Then histogram the resultant angles
 - The mean might be the measured angle

Algorithm

- Tracks make a helix through the field
- Projection onto solenoid x-y is a circle
- Use polynomial expansion for a circle
 - $R^2 = (x x_-)^2 + (y y_-)^2$

•
$$a_2 = R^2 - x_0^2 + y_0^2$$

- This is a sum of polynomial terms; we can fit track by track using linear least squares
- Then histogram the resultant angles
 - The mean might be the measured angle

- Clipping of tails in distribution; ROOT calculation of RMS is incorrect – Done
 - Now use fit to peak
- Tracks fitted with $\Theta_{\star} \sim 0.1$ rad are not small angles
 - Now use fit to peak
- Compare w coefficient with uw, vw coefficients
 - See slides
- Try fitting with Θ_{x} (and Θ_{y}) forced to 0
- Try a chi squared cut
- Turn into an iteration; fit, rotate, fit, rotate, …
 - No improvement
- Check vs MC
- Look at beam distributions to check run conditions were same
- Try a "global fit" i.e. invert a big matrix with individual x₀, y₀, r, but global Θ_x, Θ_y
- Be careful to define Θ_x , Θ_y Rogers to define convention

Data

- 2015-07-24
 - SSD run at ~ 1.5 T
 - 3 runs, 7288, 7289, 7290
 - Reconstructed using MAUS ? Legacy geometry
- 2015-09-21
 - SSU run at ~ 1.5 T
 - 4 runs 7367, 7368, 7369, 7370, 7376, 7377
 - Run aborted due to unexpected magnet ramp during 7367/7377
 - Reconstructed using MAUS v1.1.0 geometry: CDB ID 70
- 2015-10-07
 - SSU run at ~ 4 T
 - 2 runs 7469, 7475
 - Reconstructed using MAUS v1.1.1 geometry: Preprod CDB ID 674
- All geometries have known issues
 - May mean that angles (x, y) are mixed

Analysis

- Cuts as follows:
 - Require exactly one space point in TOF1 and TOF2
 - Require 5 space points in relevant tracker, one per station
 - Require 15 clusters
 - No "muon window" cut
- Calculate theta as a₅/(2a₂)
 - Attempted to cross check with a₃/(a₀a₄+a₁a₅) but spread was too big to be useful
- Consistency run to run is ~ a bit rough
 - Errors are raw ROOT TFit errors may not be correct
- Systematics are under study and have not been folded in
 - See later slides

2015-07-24

WICE

2015-09-21

ArchiveViewer - Untitled.xml* (on hepInv154.pp.rl.ac.UK) File Edit View Tools Window Help . 🗸 .. 🔻 search Start 09/22/2015 22:00:00.000 MICE-SSU-TRIM-02:IMAG End now ... new formula add remove clear bottom 💌 MICE-SSU-MATCH-01:IMAG ... MICE-SSU-MATCH-02:IMAG Main Range Axis 💌 MICE-SSU-CNTR-01:IMAG ... Max ICE-SSU-TRIM-01:IMAG ---MICE-SSU-TRIM-02:IMAG ---Min 🔄 Keep Ranges Type normal 💌 left 💌 Plot JFreeChart For Time Plots гP ■ (0.011:270.317A) ■ (0.000:100.867A) ■ (0.000:100.173A) ■ (15.9565: 0.0035A) ■ (10.6271:0.0001A) 280 270 260 250 240 230 220 210 200 190 180 170 160 150 sin 140 130 120 Mai Mai 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 09-22-15 23h 09-23-15 00h 09-23-15 01h 09-23-15 02h 09-23-15 03h 09-23-15 04h 09-23-15 05h 09-23-15 06h 09-23-15 07h 09-23-15 08h 09-23-15 09h 09-23-15 10h . . Main Time Axis (GMT) . . -\$ Ŧ • ►◀ X + + + ---

😇 Menu 🧮 🛃 💽 💼 🛐 🗟 computing ... 🖻 cr67@hepl... 🛛 🛃 ArchiveVie... 👘 2015-08-1... 🚺 rogers-mice... 🚺 2015-08-2... 😻 ELOG - Mozi... 😻 Computing ... 🔰 Computing ... 🚺 23 4 🐗 🗬 🕇 👤 🖇 🖍 😭 10% 11:51 📼

2015-10-07

Haven't looked at archiver yet

Run 7367 - SSU 1.5 T

Run	θ _x [mrad]	Err(0 _x) [mrad]	θ _y [mrad]	$Err(\theta_x)$ [mrad]	Notes	
7367	0.81	0.4	-1.26	0.42	Pion reference run	
7368	-0.36	0.79	-3.28	0.78	Pion reference run	
7369	0.16	0.42	-1.29	0.39	Pion reference run	
7370	0.68	0.45	-1.04	0.47	Pion reference run	
7376	0.77	0.43	-0.45	0.43	Magnets were ramping up	
7377	1.62	0.91	1.26	1.27	Magnets were ramping up	13

Run 7469 - SSU 4 T

14

Run 7289 - SSD 1.5 T

7289

7290

4.5

6.6

0.92

0.81

6-140 muons

6-140 muons

4.1

1.5

1.1

0.8

Thanks for your attention

End

Monte Carlo

- What about errors?
 - Systematic in particular
- Try Monte Carlo

