Tracker to Solenoid Alignment

C. Rogers,

ASTeC Intense Beams Group
Rutherford Appleton Laboratory

Tracker to Solenoid Alignment

- Aim is to measure the tracker tilt angle wrt solenoid field

Tilt angle Θ_{x}
(rotation about x axis)

Magnet Mapping - Plan (CM42)

Algorithm

- Tracks make a helix through the field
- Projection onto solenoid $x-y$ is a circle
- Use polynomial expansion for a circle
- $R^{2}=\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}$
- Transform to tracker coordinate system (u, v, w)
- Small angle approximation
- $R^{2}=\left(u+\theta_{x} w-x_{0}\right)^{2}+\left(v+\theta_{y} w-y_{0}\right)^{2}$
- Expand and divide through by constant term
- $\left\{-2 x_{0} u-2 y_{0} v+\left(u^{2}+v^{2}\right)+2 \theta_{x} w u+2 \theta_{y} w v-2\left(y_{0} \theta_{y}+x_{0} \theta_{x}\right) w\right\} / a_{2}=1$
- $a_{2}=R^{2}-x_{0}{ }^{2}+y_{0}{ }^{2}$
- This is a sum of polynomial terms; we can fit track by track using linear least squares
- Then histogram the resultant angles
- The mean might be the measured angle

Algorithm

- Tracks make a helix through the field
- Projection onto solenoid $x-y$ is a circle
- Use polynomial expansion for a circle

$$
\text { - } R^{2}=(x-x)^{2}+(v-v)^{2}
$$

$\mathrm{a}_{0} / \mathrm{a}_{2}$
$\mathrm{a}_{1} / \mathrm{a}_{2}$

$$
\mathrm{a}_{3} / \mathrm{a}_{2}
$$

$$
\mathrm{a}_{4} / \mathrm{a}_{2}
$$

$$
\mathrm{a}_{5} / \mathrm{a}_{2}
$$

- $\left\{-2 x_{0} u-2 y_{0} v+\left(u^{2}+v^{2}\right)+2 \theta_{x} w u+2 \theta_{y} w v-2\left(y_{0} \theta_{y}+x_{0} \theta_{x}\right) w\right\} / a_{2}=1$
- $a_{2}=R^{2}-x_{0}{ }^{2}+y_{0}{ }^{2}$
- This is a sum of polynomial terms; we can fit track by track using linear least squares
- Then histogram the resultant angles
- The mean might be the measured angle

Job List

- Clipping of tails in distribution; ROOT calculation of RMS is incorrect Done
- Now use fit to peak
- Fracks fitted with $\theta_{*}-0.1$ rad are not small angles
- Now use fit to peak
- Compare w coefficient with uw, vw-coefficients
- See slides
- Try fitting with $\theta_{*}\left(\right.$ and $\left.\theta_{\ngtr}\right)$ forced to 0
- Try a chi squared cut
- Furn into an iteration; fit, rotate, fit, rotate,...
- No improvement
- Check vs MC
- Look at beam distributions to check run conditions were same
- Try a "global fit" i.e. invert a big matrix with individual x_{0}, y_{0}, r, but global $\theta_{x^{\prime}} \theta_{y}$
- Be careful to define θ_{x}, θ_{y} Rogers to define convention

Data

- 2015-07-24
- SSD run at ~ 1.5 T
- 3 runs, 7288, 7289, 7290
- Reconstructed using MAUS ? Legacy geometry
- 2015-09-21
- SSU run at ~ 1.5 T
- 4 runs 7367, 7368, 7369, 7370, 7376, 7377
- Run aborted due to unexpected magnet ramp during 7367/7377
- Reconstructed using MAUS v1.1.0 geometry: CDB ID 70
- 2015-10-07
- SSU run at ~ 4 T
- 2 runs 7469, 7475
- Reconstructed using MAUS v1.1.1 geometry: Preprod CDB ID 674
- All geometries have known issues
- May mean that angles (x, y) are mixed

Analysis

- Cuts as follows:
- Require exactly one space point in TOF1 and TOF2
- Require 5 space points in relevant tracker, one per station
- Require 15 clusters
- No "muon window" cut
- Calculate theta as $\mathrm{a}_{5} /\left(2 \mathrm{a}_{2}\right)$
- Attempted to cross check with $a_{3} /\left(a_{0} a_{4}+a_{1} a_{5}\right)$ but spread was too big to be useful
- Consistency run to run is ~ a bit rough
- Errors are raw ROOT TFit errors - may not be correct
- Systematics are under study and have not been folded in
- See later slides

- Haven't looked at archiver yet

Run 7367-SSU 1.5 T

TKU θ_{y}

Run	$\boldsymbol{\theta}_{\mathrm{x}}[\mathrm{mrad}]$	$\operatorname{Err}\left(\boldsymbol{\theta}_{\mathrm{x}}\right)[\mathrm{mrad}]$	$\boldsymbol{\theta}_{\mathrm{y}}[\mathrm{mrad}]$	$\operatorname{Err}\left(\boldsymbol{\theta}_{\mathrm{x}}\right)[\mathrm{mrad}]$	Notes
7367	0.81	0.4	-1.26	0.42	Pion reference run
7368	-0.36	0.79	-3.28	0.78	Pion reference run
7369	0.16	0.42	-1.29	0.39	Pion reference run
7370	0.68	0.45	-1.04	0.47	Pion reference run
7376	0.77	0.43	-0.45	0.43	Magnets were ramping up
7377	1.62	0.91	1.26	1.27	Magnets were ramping up

Run 7469-SSU 4 T

Run	$\boldsymbol{\theta}_{\mathrm{x}}[\mathrm{mrad}]$	$\operatorname{Err}\left(\boldsymbol{\theta}_{\mathrm{x}}\right)[\mathrm{mrad}]$	$\boldsymbol{\theta}_{\mathrm{y}}$ [mrad]	$\operatorname{Err}\left(\boldsymbol{\theta}_{\mathrm{x}}\right)[\mathrm{mrad}]$	Notes
7469	0.51	0.53	-2.1	0.53	$3-200$ Muons
7475	0.34	0.17	-0.57	0.17	Pion reference run

Run 7289-SSD 1.5 T

TKD uw θ_{x}

TKD vw θ_{y}

Run	$\boldsymbol{\theta}_{\mathrm{x}}[\mathrm{mrad}]$	$\operatorname{Err}\left(\theta_{\mathrm{x}}\right)[\mathrm{mrad}]$	$\boldsymbol{\theta}_{\mathrm{y}}[\mathrm{mrad}]$	$\operatorname{Err}\left(\theta_{\mathrm{x}}\right)[\mathrm{mrad}]$	Notes
7288	5.1	0.7	3.9	0.8	$6-140$ muons
7289	4.5	1.1	4.1	0.92	$6-140$ muons
7290	6.6	0.8	1.5	0.81	$6-140$ muons

- Thanks for your attention

Monte Carlo

- What about errors?
- Systematic in particular
- Try Monte Carlo

Monte Carlo Geometry ID 72

Monte Carlo Geometry ID 72

Elevation

Fields

