Enabling Ckov Monte Carlo
Digitizer with C++ in MAUS

Ao Liu

Define an SD first r

» Sensitive Detectors (SD) in MAUS are defined
|n the geometry/ dat f||eS (files/geometry/download);

— For Ckov, they are in Ckov1.dat and Ckov2.dat;

— 4 SD were previously defined at the PMTs, 1 is
defined in the aerogel (Virtual);

Current Status

» Sensitive Detectors (SD) in MAUS are defined
|n the geOmetry/ dat f||eS (files/geometry/download);

— For Ckov, they are in Ckov1.dat and Ckov2.dat;

— 4 SD were previously defined at the PMTs, 1 is
defined in the aerogel (Virtual); \

These have been done: aerogel has been
defined as an SD (CKOV) and PMTs are no
more SDs, but can be added back.

Define an SD first

» Defined SD are actually constructed in
DeteCtOrCOnStFUCtIOHCC (src/common_cpp/Simulation/

DetectorConstruction.”);

—Does not construct Virtual SDs. The one in
the aerogel was NOT constructed.

Define an SD first

Added CKOV SD in the module construction.

|

» Defined SD are actually constructed in
DeteCtOFCOnStFUCtIOnCC (src/common_cpp/Simulation/

DetectorConstruction.”);

—Does not construct Virtual SDs. The one in
the aerogel was NOT constructed.

Let the SD generate hits

» Hits are generated in SDs,
DetectorConstruction.cc calls a module
(CKOVSD * src/legacy/DetModeI/Ckov/CKOVSD.hh) and a method
(GetSDHits) to construct the hits at the SD.

— CKOVSD.* were previously in an old format, written
based on the old SD and Hit C++ modules. Now we
use MAUSSD.* and Hit.* (src/common_cpp/DetModeI/MAUSSD.*, src/

common_cpp/DataStructure/Hit.*

N lréﬁklép@

Let the SD generate hits

L.

» Hits are generated in SDs,
DetectorConstruction.cc calls a module
(CKO VSD.* src/legacy/DetModeI/Ckov/CKOVSD.hh) and a method
(GetSDHits) to construct the hits at the SD.

— CKOVSD.* were previously in an old format, written
based on the old SD and Hit C++ modules. Now we
use MA USSD * and Hlt * (src/common_cpp/DetModeI/MAUSSD.*, src/

common_cpp/DataStructure/Hit.*

These have been done: CKOVSD.* remodeled, work with
new Hit class, fills the channelld station, fills the hit
structure (energy, time, etc.) and SD structure. They are
moved to src/common_cpp/DetModel/Ckov/

Adding Hit types in Hit, increasing its
capabillities
* The structure of the hits is defined in Hit* hh,

previously it did not have a CkovHit, and did
nOt reCOFd maSS Of the h|t paI’tIC|e (src/common_cpp/

DataStructu re/)

— CkovHit needs CkovChannelld to record which

station (detector) it is where the hit happens.
Previously this file didn’t exist.

Adding Hit types in Hit, increasing its
capabillities |
* The structure of the hits is defined in Hit* hh,

previously it did not have a CkovHit, and did
nOt reCOFd maSS Of the h|t paI’tIC|e (src/common_cpp/

DataStructu re/)

— CkovHit needs CkovChannelld to record which

station (detector) it is where the hit happens.

Previously this file didn’t exist.

These have been done:

Hit*.hh has new methods: GetMass and SetMass, and a
new attribute: _mass;

CkovHit is now registered as

typedef Hit<CkovChannelld> CkovHit;

Adding CkovChannelld.*

* In order to fill the template class,
CkOVChanne”d * are needed (src/common_cpp/DataStructure/

CkovChanneIId.*)

— CkovChannelld needs to record which station
(detector) it is where the hit happens.

~ lréﬂklép@

Adding CkovChannelld.*

* In order to fill the template class,
CkOVChanne”d * are needed (src/common_cpp/DataStructure/

CkovChanneIId.*)

— CkovChannelld needs to record which station
(detector) it is where the hit happens.

These have been done: Methods GetStation and SetStation
have been defined. Records the station number now as
_station.

They are called in the CKOVSD. * to get the station number of
the SD. Therefore, Ckov*.dat now have propertylnt: CkovStation
— 0 for Ckov A and 1 for B.

Registering Ckov hits in an array and then in
the mc tree

* Once individual hits are generated, ,
MCEvent.™ (scicommon_cppatastucurer) NEEM tO Organize
them into an array. Then,

MAUSEventAction. *(scicommon_cppisimuiation) US€ the
above method at the end of the event action,

and fill the hits.

Registering Ckov hits in an array and then in
the mc tree

* Once individual hits are generated, ,
MCEvent.™ (scicommon_cppatastucurer) NEEM tO Organize
them into an array. Then,

MAUSEventAction. *(scicommon_cppisimuiation) US€ the
above method at the end of the event action,

and fill the hits.

These have been done: In MCEvent.*, CkovHitArray and GetCkovHlits,
SetCkovHits are defined.

_events->at(_primary)->SetCkovHits(new std::vector<CkovHit>());
added in MAUSEventAction.cc, now Ckov hits are in the mc tree.

Parsing the JSON structure so hits can be
seen in ROOT

» Hits are ready, but can not be directly seen In
ROOT, they must be processed from JSON to
ROOT, done by HitProcessor.”, and called by

MCEVGHtPFOCGSSOF * (src/common_cpp/JsonCppProcessors/)

Parsing the JSON structure so hits can be
seen in ROOT L.

* Hits are ready, but can not be directly seen in
ROOT, they must be processed from JSON to
ROOT, done by HitProcessor.”, and called by

MCEVGI’)tPI’OCGSSOI’ * (src/common_cpp/JsonCppProcessors/)

These have been done: Added CkovChannelldProcessor. *, included them in
HitProcessor.* so that CkovChannellD are registered as branches.

Notice that HitProcessor.* also register a value branch called “mass”,
which was added in Hit*.hh and will be needed in the CkovMCDigitizer.

MCEventProcessor. * registers an array of Ckovhits by calling the GetCkovHits

Suggestion: Add details in ObjectProcessor-
inl.hh

* When playing with the processors, | realized
that when ObjectProcessor-inl.hh.™ (stcicommon_copr
ssoncppProcessors’) @ttempts to process an object but
found non-object, it produces an error:

— throw(Exception(Exception::recoverable, "Attempt to pass a json "+tp+"

type as an object”,"ObjectProcessor<ObjectType>::JsonToCpp"));
— std::string tp = JsonWrapper::Value TypeToString(json_object.type());

— This will only show you the type of the thing being processed, but not
where it belongs to, and what it's name is.

Suggestion: Add details in ObjectProcessor-

inl.hh L.

When playing with the processors, | realized
that when ObjectProcessor-inl.hh.™ (scicommon_cppr

JsonCppProcessors/) attemptS tO prOCeSS an ObjeCt bUt
found non-object, it produces an error:

— throw(Exception(Exception::recoverable, "Attempt to pass a json "+tp+"
type as an object”,"ObjectProcessor<ObjectType>::JsonToCpp"));

— std::string tp = JsonWrapper::Value TypeToString(json_object.type());

— This will only show you the type of the thing being processed, but not
where it belongs to, and what it's name is.

| haven’t done this in the codes, but | recommend: (makes the developer’s life easier)
“Attempt to pass a json "+tp+” type as an object” + “ whose name is

"+JsonWrapper::JsonToString(json_object) + “ in ” + JsonWrapper::Path::GetPath(j
son_object)

Suggestion: Add details in MiceModule.cc

L.

* When playing with the SDs, | realized that when
MiceModule.cc (swregacyiconti) attempts to find a
property (int, double, etc.) but fails will throw the
“fullname()” of the module.

— However, remember, that fullname() only finds the name of the current
module. When propertyInt looks up in the parents, grandparents, ... until
the world geometry but fails to get what it wants, the fullname() is always
the world’s name!

Suggestion: Add details in MiceModule.cc

:l
* When playing with the SDs, | realized that whe

MiceModule.cc (swregacyiconti) attempts to find a
property (int, double, etc.) but fails will throw the

“fullname()” of the module.

— However, remember, that fullname() only finds the name of the current
module. When propertyInt looks up in the parents, grandparents, ... until
the world geometry but fails to get what it wants, the fullname() is always
the world’s name!

| have done this in only propertyint:

I've set up a static string, called real name;

Every time propertyint is called, if it can’t find the propertyint in the current module,
but the current module has a _mother, it does:

real_name += name()+" that is in ";

When throwing an Exception, it throws real name+name()

10/29/15

Finally, Doing the MCDigitizer

* | have parsed Lucien’s Python code to do the physics in
the digitizer. | followed the digit structure (had to) Durga
defined to make the structure work. Durga recently
moved all the MCDigitizer from json to cpp, this new
structure is also in CkovMCDigitizer.

It goes through all the hits, defined in the previous
slides, and calculate the npe based on the hit
information. The npe are evenly distributed to the 4
pmts. Each arrival time is calculated accordingly.

For a given event, there might be multiple hits;

— If the hits belong to different stations, then they are filled into
their corresponding digit structure at the same time;

— Hits in the same station give one signal: total npe and an
averaged arrival time at each of the PMTs.

10/29/1¢

80

70

60

50

40

30

20

10

_hits->_energy

htemp
C Entries 2280
"_ Mean 218
E RMS 22.16
Z_ data._spill._recon->_ckov_event->_ckov_digits._B._arrival_time_6
= htemp
- C Entries 2278
:_ 200:_ Mean 42.27
- - RMS 4.369
- 180 —
- 160/~
5_ 140
= 120
— 100
:I | o [1 | | | || | L1 1 | L1 1 I || | || ol | | 80:_
140 160 180 200 220 240 260 280 300 -
data._spill._mc->_ckov_hits->_energy 60—
40—
20—
O:I III|IIII|IIII|IIII|IIII I—|_|III_|

30 35 40 45 50 55 60 65
data._spill._recon->_ckov_event->_ckov_digits._B._arrival_time_6

ranklipeo

ToDo in the future

* Look at the reconstructed data and compare *
with the MC data;

* Have a little plan: to move the MiceModule files
from legacy to common_cpp and continue to
maintain it there.

 Add functionalities like the real full name of the
properties. efc.

