
Enabling Ckov Monte Carlo
Digitizer with C++ in MAUS

Ao Liu

10/29/15 1

Define an SD first

•  Sensitive Detectors (SD) in MAUS are defined
in the geometry/ .dat files (files/geometry/download);
– For Ckov, they are in Ckov1.dat and Ckov2.dat;
– 4 SD were previously defined at the PMTs, 1 is

defined in the aerogel (Virtual);
•  Defined SD are actually constructed in

DetectorConstruction.cc (src/common_cpp/Simulation/
DetectorConstruction.*);

– Does not construct Virtual SDs. The one in
the aerogel is NOT constructed

10/29/15 2

Current Status

•  Sensitive Detectors (SD) in MAUS are defined
in the geometry/ .dat files (files/geometry/download);
– For Ckov, they are in Ckov1.dat and Ckov2.dat;
– 4 SD were previously defined at the PMTs, 1 is

defined in the aerogel (Virtual);
•  Defined SD are actually constructed in

DetectorConstruction.cc (src/common_cpp/Simulation/
DetectorConstruction.*);

– Does not construct Virtual SDs. The one in
the aerogel is NOT constructed

10/29/15 3

These have been done: aerogel has been
defined as an SD (CKOV) and PMTs are no
more SDs, but can be added back.

Define an SD first

•  Sensitive Detectors (SD) in MAUS are defined
in the geometry/ .dat files (files/geometry/download);
– For Ckov, they are in Ckov1.dat and Ckov2.dat;
– 4 SD were previously defined at the PMTs, 1 is

defined in the aerogel (Virtual);
•  Defined SD are actually constructed in

DetectorConstruction.cc (src/common_cpp/Simulation/
DetectorConstruction.*);

– Does not construct Virtual SDs. The one in
the aerogel was NOT constructed.

10/29/15 4

Define an SD first

•  Sensitive Detectors (SD) in MAUS are defined
in the geometry/ .dat files (files/geometry/download);
– For Ckov, they are in Ckov1.dat and Ckov2.dat;
– 4 SD were previously defined at the PMTs, 1 is

defined in the aerogel (Virtual);
•  Defined SD are actually constructed in

DetectorConstruction.cc (src/common_cpp/Simulation/
DetectorConstruction.*);

– Does not construct Virtual SDs. The one in
the aerogel was NOT constructed.

10/29/15 5

Added CKOV SD in the module construction.

Let the SD generate hits

•  Hits are generated in SDs,
DetectorConstruction.cc calls a module
(CKOVSD.* src/legacy/DetModel/Ckov/CKOVSD.hh) and a method
(GetSDHits) to construct the hits at the SD.
– CKOVSD.* were previously in an old format, written

based on the old SD and Hit C++ modules. Now we
use MAUSSD.* and Hit.* (src/common_cpp/DetModel/MAUSSD.*, src/
common_cpp/DataStructure/Hit.*

10/29/15 6

Let the SD generate hits

•  Hits are generated in SDs,
DetectorConstruction.cc calls a module
(CKOVSD.* src/legacy/DetModel/Ckov/CKOVSD.hh) and a method
(GetSDHits) to construct the hits at the SD.
– CKOVSD.* were previously in an old format, written

based on the old SD and Hit C++ modules. Now we
use MAUSSD.* and Hit.* (src/common_cpp/DetModel/MAUSSD.*, src/
common_cpp/DataStructure/Hit.*

10/29/15 7

These have been done: CKOVSD.* remodeled, work with
new Hit class, fills the channelId station, fills the hit
structure (energy, time, etc.) and SD structure. They are
moved to src/common_cpp/DetModel/Ckov/

Adding Hit types in Hit, increasing its
capabilities

•  The structure of the hits is defined in Hit*.hh,
previously it did not have a CkovHit, and did
not record mass of the hit particle (src/common_cpp/

DataStructure/)
– CkovHit needs CkovChannelId to record which

station (detector) it is where the hit happens.
Previously this file didn’t exist.

10/29/15 8

Adding Hit types in Hit, increasing its
capabilities

•  The structure of the hits is defined in Hit*.hh,
previously it did not have a CkovHit, and did
not record mass of the hit particle (src/common_cpp/

DataStructure/)
– CkovHit needs CkovChannelId to record which

station (detector) it is where the hit happens.
Previously this file didn’t exist.

10/29/15 9

These have been done:
Hit*.hh has new methods: GetMass and SetMass, and a
new attribute: _mass;
CkovHit is now registered as
typedef Hit<CkovChannelId> CkovHit;

Adding CkovChannelId.*

•  In order to fill the template class,
CkovChannelId.* are needed (src/common_cpp/DataStructure/

CkovChannelId.*)
– CkovChannelId needs to record which station

(detector) it is where the hit happens.

10/29/15 10

Adding CkovChannelId.*

•  In order to fill the template class,
CkovChannelId.* are needed (src/common_cpp/DataStructure/

CkovChannelId.*)
– CkovChannelId needs to record which station

(detector) it is where the hit happens.

10/29/15 11

These have been done: Methods GetStation and SetStation
have been defined. Records the station number now as
_station.
They are called in the CKOVSD.* to get the station number of
the SD. Therefore, Ckov*.dat now have propertyInt: CkovStation
– 0 for Ckov A and 1 for B.

Registering Ckov hits in an array and then in
the mc tree

•  Once individual hits are generated, ,
MCEvent.* (src/common_cpp/DataStructure/) need to organize
them into an array. Then,
MAUSEventAction.*(src/common_cpp/Simulation) use the
above method at the end of the event action,
and fill the hits.

10/29/15 12

Registering Ckov hits in an array and then in
the mc tree

•  Once individual hits are generated, ,
MCEvent.* (src/common_cpp/DataStructure/) need to organize
them into an array. Then,
MAUSEventAction.*(src/common_cpp/Simulation) use the
above method at the end of the event action,
and fill the hits.

10/29/15 13

These have been done: In MCEvent.*, CkovHitArray and GetCkovHits,
SetCkovHits are defined.
_events->at(_primary)->SetCkovHits(new std::vector<CkovHit>());
added in MAUSEventAction.cc, now Ckov hits are in the mc tree.

Parsing the JSON structure so hits can be
seen in ROOT

•  Hits are ready, but can not be directly seen in
ROOT, they must be processed from JSON to
ROOT, done by HitProcessor.*, and called by
MCEventProcessor.* (src/common_cpp/JsonCppProcessors/)

10/29/15 14

Parsing the JSON structure so hits can be
seen in ROOT

•  Hits are ready, but can not be directly seen in
ROOT, they must be processed from JSON to
ROOT, done by HitProcessor.*, and called by
MCEventProcessor.* (src/common_cpp/JsonCppProcessors/)

10/29/15 15

These have been done: Added CkovChannelIdProcessor.*, included them in
HitProcessor.* so that CkovChannelID are registered as branches.
Notice that HitProcessor.* also register a value branch called “mass”,
which was added in Hit*.hh and will be needed in the CkovMCDigitizer.

MCEventProcessor.* registers an array of Ckovhits by calling the GetCkovHits

Suggestion: Add details in ObjectProcessor-
inl.hh

•  When playing with the processors, I realized
that when ObjectProcessor-inl.hh.* (src/common_cpp/

JsonCppProcessors/) attempts to process an object but
found non-object, it produces an error:
–  throw(Exception(Exception::recoverable, "Attempt to pass a json "+tp+"

type as an object“,"ObjectProcessor<ObjectType>::JsonToCpp"));
–  std::string tp = JsonWrapper::ValueTypeToString(json_object.type());
–  This will only show you the type of the thing being processed, but not

where it belongs to, and what it’s name is.

10/29/15 16

Suggestion: Add details in ObjectProcessor-
inl.hh

•  When playing with the processors, I realized
that when ObjectProcessor-inl.hh.* (src/common_cpp/

JsonCppProcessors/) attempts to process an object but
found non-object, it produces an error:
–  throw(Exception(Exception::recoverable, "Attempt to pass a json "+tp+"

type as an object“,"ObjectProcessor<ObjectType>::JsonToCpp"));
–  std::string tp = JsonWrapper::ValueTypeToString(json_object.type());
–  This will only show you the type of the thing being processed, but not

where it belongs to, and what it’s name is.

10/29/15 17

I haven’t done this in the codes, but I recommend: (makes the developer’s life easier)
“Attempt to pass a json ”+tp+“ type as an object” + “ whose name is
”+JsonWrapper::JsonToString(json_object) + “ in ” + JsonWrapper::Path::GetPath(j
son_object)

Suggestion: Add details in MiceModule.cc

•  When playing with the SDs, I realized that when
MiceModule.cc (src/legacy/Config/) attempts to find a
property (int, double, etc.) but fails will throw the
“fullname()” of the module.
–  However, remember, that fullname() only finds the name of the current

module. When propertyInt looks up in the parents, grandparents, … until
the world geometry but fails to get what it wants, the fullname() is always
the world’s name!

10/29/15 18

Suggestion: Add details in MiceModule.cc

•  When playing with the SDs, I realized that when
MiceModule.cc (src/legacy/Config/) attempts to find a
property (int, double, etc.) but fails will throw the
“fullname()” of the module.
–  However, remember, that fullname() only finds the name of the current

module. When propertyInt looks up in the parents, grandparents, … until
the world geometry but fails to get what it wants, the fullname() is always
the world’s name!

10/29/15 19

I have done this in only propertyInt:
I’ve set up a static string, called real_name;
Every time propertyInt is called, if it can’t find the propertyInt in the current module,
but the current module has a _mother, it does:
real_name += name()+" that is in ";
When throwing an Exception, it throws real_name+name()

Finally, Doing the MCDigitizer
•  I have parsed Lucien’s Python code to do the physics in

the digitizer. I followed the digit structure (had to) Durga
defined to make the structure work. Durga recently
moved all the MCDigitizer from json to cpp, this new
structure is also in CkovMCDigitizer.

•  It goes through all the hits, defined in the previous
slides, and calculate the npe based on the hit
information. The npe are evenly distributed to the 4
pmts. Each arrival time is calculated accordingly.

•  For a given event, there might be multiple hits;
–  If the hits belong to different stations, then they are filled into

their corresponding digit structure at the same time;
–  Hits in the same station give one signal: total npe and an

averaged arrival time at each of the PMTs.

10/29/15 20

The result is (just a working example)

10/29/15 21

ToDo in the future

•  Look at the reconstructed data and compare
with the MC data;

•  Have a little plan: to move the MiceModule files
from legacy to common_cpp and continue to
maintain it there.

•  Add functionalities like the real full name of the
properties. etc.

10/29/15 22

