Geometry Status An As Built Geometry for Step IV

Ryan Bayes

University of Glasgow

October 29, 2015

Ryan Bayes (University of Glasgow)

Geometry Status

3

- ∢ ≣ →

Contents

Introduction

- 2 Contents of Geometry
- 3 Corrections to the Geometry
- ④ Digitization and Reconstruction

3

-

Introduction

Requirements for the geometry implementation

- Needed to check and validate the detector models.
- Need to generate the CAD models with the correct survey information.
- Need to validate the material budget in the beam-line.

Use case status

- Must be downloaded by the user from CDB
- Can be downloaded by run, as the current geometry (broken), or from a geometry ID.
- Download by run also downloads corresponding beamline currents
 No cooling channel currents yet default (200 MeV/c beam) used.
- Beamline and Cooling Channel currents can be downloaded in conjunction with geometry ID download
 - Beamline information can be downloaded by run or by CDB tag.
 - Cooling channel can be downloaded by tag (not yet stored by run).

CAD Model

Ryan Bayes (University of Glasgow)

Geometry Status

Detector Geometries from the GDML Files TOF1 Tracker1 KL

Ckov1

Ryan Bayes (University of Glasgow)

EMR

Geometry Status

Recent(ish) Changes to Detector Models

No Changes

LiH Disk absorber

Changes to Volumes

- Trackers (US and DS)
 metrology reapplied
- LH2 absorber
 - interior window flipped
- KL Added stepping limits
- TOF0 Added external world volume
- EMR Added external world volume

Added volumes

- Helium volumes.
 - Fill empty space between tracker and diffuser.
 - Fill empty space between tracker and He windows.

Detector Changes

- TOF1 and TOF2
 - Removed shielding
 - Reduced size of volume

<ロ> (日) (日) (日) (日) (日)

- Ckov 1 and Ckov 2
 - Change the sensitive detector to the aerogel.

- 3

Detector Positioning

- Positions of survey nests provided.
- Can be used to determine position of detectors in hall coordinate system.
- Positions of the nests relative to detector centres
 - Mostly accessible from surveys.

Positions of Survey Nests Relative to Detectors

- Information requested but not supplied (Except for EMR)
- Found by
 - Assuming the nests are co-planer and describe a rectangle.
 - Calculating the location of the vertices from halving the distance between the survey nests.

Example: TOF1

	x(mm)	y(mm)	z(mm)	$x_{Det}(mm)$	<i>y_{Det}</i> (mm)
X5	184.90	-241.29	12953.10	191.02	-242.39
X6	186.05	243.48	12955.19	191.24	242.39
X7	-196.42	241.31	12955.11	-191.24	241.62
X8	-197.14	-241.92	12953.00	-191.02	-241.62
Averages	-5.65	0.395	12954.1		

• Positions and rotations of detectors found with a χ^2 minimization of the points in the detector coordinates to the points in hall coordinates.

•
$$ec{x}_{survey} = R(heta_x) R(heta_y) R(heta_z) ec{x}_{det} + ec{x}_{hall}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fits for Positions and Rotations of Detectors

- Fits conducted assuming a tolerance and base uncertainty of 50 mm.
- Output uncertainty is too large scale by $\sqrt{\chi^2/ndf}$.

Detector	x (mm)	y (mm)	z (mm)	$\chi^2/{ m ndf}$
TOF0	3.0±0.1	2.9±0.1	5285.6±0.1	$4.4 \times 10^{-5}/6$
TOF1	-5.6±0.4	-0.4±0.4	$12929.4{\pm}0.4$	0.00044 / 6
TOF2	$13.92{\pm}0.04$	$-9.40{\pm}0.04$	$21152.30\ {\pm}0.04$	$5.8 \times 10^{-6}/6$
KL	$17.0{\pm}2.6$	$-11.9{\pm}2.6$	$21234.6{\pm}2.6$	0.022 / 6
Ckov 1	-0.0±0.4	$0.0{\pm}0.6$	5617.1±1.4	0.000128 / 3
Ckov 2	0.7 ± 2.3	$5.0{\pm}2.6$	$5994.6 {\pm} 6.9$	0.00238 / 3
EMR	-84.3±0.2	$5.6{\pm}0.2$	$21962.4{\pm}0.2$	7.77×10^{-5} / 6
Detector	θ_x (mrad)	θ_y (mrad)	θ_z (mrad)	$\chi^2/{ m ndf}$
TOF0	-6.0±0.5	-5.2±0.4	-3.7±0.3	$4.4 \times 10^{-5}/6$
TOF1	$5.7{\pm}1.5$	$0.0{\pm}1.9$	-0.3±1.2	0.00044 / 6
TOF2	-2.1±0.1	-6.7 ± 0.1	$0.3{\pm}0.1$	$5.8 \times 10^{-6}/6$
KL	0.0±6.7	-7.9±3.9	8.6 ±3.4	0.022 / 6
Ckov 1	$1.3{\pm}1.1$	7.6 ± 3.8	-2.2 ± 1.4	0.000128 / 3
Ckov 2	$-1.0 {\pm} 0.5$	$7.0{\pm}18.1$	-1.0 ± 5.7	0.00238 / 3
EMR	2.2±0.3	$2.5{\pm}0.3$	-0.0±0.2	7.77×10^{-5} / 6

Corrections to the Channel Positions and Orientations

- Flanges at upstream and downstream ends of both solenoids and the focus coil was surveyed.
- Orientation and positions of solenoids calculable from these data.

Rotations of Magnets

Magnet	θ_x	θ_y
US solenoid	-0.15°	0.03°
Focus Coil	0.05°	-0.02°
DS solenoid	0.41°	0.06°
	· ·	

• Order of magnitude greater than field alignment. ^a

^ahttps://indico.cern.ch/event/ 374187/session/6/contribution/29/ attachments/745674/1022924/ Mapping-CM42s.pdf

X-Z view of MICE channel

Ryan Bayes (University of Glasgow)

Reconstructed 200 MeV/c μ^+ MC with CDB Geometry

TOF Reconstruction

Tracker Reconstruction

• Problem with the EMRSD identified recently — fix in progress

Current Status

- Corrections have been made to the GDML models of the Ckovs, EMR, KL, and the TOFs.
- Still need to produce EMR sensitive detectors (in progress).
- Positions of detectors and SC magnet models have been adjusted.
- Two official geometries have been uploaded.
 - ▶ ID 71: TOF, EMR, and KL positions valid from 21 June
 - ID 72: TOF, EMR, and KL positions valid from 13 July
- Four preliminary geometries (no survey data) also exist
 - ID 73: LH2 Vessel filled
 - ► ID 74: LiH disk absorber in place.
- Geometry developed from model provided September 2014.
- Detector surveys taken from model provided 13 August 2015.

一日、