MICE Analysis Status and Plans

C. Rogers, ASTeC Intense Beams Group Rutherford Appleton Laboratory

Status

- 2015 data taking so far
 - Detector alignment
 - Magnet alignment
 - First look at PID
- Plans
 - Implications of SSD without Match coil 1
 - Updated run plan
- In this session:
 - "Tracker Alignment, Efficiency and Resolution" Chris Hunt
 - "Demonstration of Ionisation Cooling Update" J Pasternak

Outline Data Plan

WICE

- Commission hardware
- Beam-based alignment of detectors with field off
- Beam-based alignment of magnets with field on
 - Power one module at a time, then all magnets
- Check beam quality through the lattice
- Optics and momentum scans with/without absorber

- First pass analysis should follow data ASAP
- At least two analyses for every (major) measurement

2015 physics data

March $28^{th} - 29^{th}$ April 19th-20th April 26th-27th June 2nd June 19th-27th July 3rd-4th July $22^{nd} - 23^{rd}$ September 21st – 22nd September 25th – 29th October 7th

October 14th

Ckov momentum scan Beamline studies **Beamline studies Beamline studies** Detector alignment (no field) Detector alignment (no field) SSD at 1.5 T SSU at 1.5 T Ckov momentum scan Magnetic field remnant study Beam polarisation measurement 4 T in SSU **TOF0** alignment

							First Analysis		
M .		Principle of	Laptop	Batch MC &	Final Run		& Data	T' IA I '	X .7 • 4
Measurement	Coordinator	Measurement	Studies	Analysis	Settings	Data Taking	Checks	Final Analysis	Write up
				Step I					NT
Magnet Mapping - Axes	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	F F	Not started
Magnet Mapping - Coil Geometries	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Not started	Not started
Tracker Alignment – least squares	J. Nugent	-	Complete	In progress	Complete	Complete	In progress	Not started	Not started
Tracker Alignment – residuals	C. Hunt	Complete	Complete	In progress	Complete	Complete	Complete	In progress	MICE Note
PID Detector Alignment	F. Drielsma	Complete	Complete	In progress	Complete	In progress	In progress	In progress	MICE Note
Beamline Commissioning – u/s	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Complete	MICE Note 476
Beamline Commissioning – d/s	V. Blackmore	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
Global detector resolution	M. Uchida	Complete	In progress	Not started	Not started				
	M. Uchida/F.								
Global detector efficiencies	Drielsma	Complete	In progress	Not started	Not started				
	T. Mohayai/S.								
PID measurement – cut based	Wilbur	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
PID measurement – log likelihood	C. Pidcott	Complete	Complete	In progress	In progress	In progress	In progress	Not started	Not started
Magnet alignment – transfer matrix	S. Middleton	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
Magnet alignment – minimise									
residuals	S. Middleton		In progress	In progress	Not started				
Magnet alignment – cycloid fit	C. Rogers	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
Beam quality	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
First emittance reduction	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Full emittance reduction	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Non-linear optics	R. Ryne	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
MCS - field off	J. Nugent	Complete	In progress	In progress	Complete	Not started	Not started	Not started	Not started
MCS - field on	C. Pidcott	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Energy loss – measurement based	R. Gardner	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Energy loss – minimise residuals	D. Maletic	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Beam polarisation	S. Middleton	Complete	Complete	In progress	Complete	Complete	Complete	In progress	In progress

		Principle of	Laptop	Batch MC &	Final Run		First Analysis & Data		
Measurement	Coordinator	Measurement	Studies	Analysis	Settings	Data Taking	Checks	Final Analysis	Write up
				Step I	V				
Magnet Mapping - Axes	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Complete	Not started
Magnet Mapping - Coil Geometries	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Not started	Not started
Tracker Alignment – least squares	J. Nugent	Complete	Complete	In progress	Complete	Complete	In progress	Not started	Not started
Tracker Alignment – residuals	C. Hunt	Complete	Complete	In progress	Complete	Complete	Complete	In progress	MICE Note
PID Detector Alignment	F. Drielsma	Complete	Complete	In progress	Complete	In progress	In progress	In progress	MICE Note
Beamline Commissioning – u/s	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Complete	MICE Note 476
Beamline Commissioning – d/s	V. Blackmore	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
Global detector resolution	M. Uchida	Complete	In progress	Not started	Not started				
	M. Uchida/F.								
Global detector efficiencies	Drielsma	Complete	In progress	Not started	Not started				
	T. Mohayai/S.	- ·	- ·		- ·	_	_	_	
PID measurement – cut based		Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
PID measurement – log likelihood	C. Pidcott	Complete	Complete	In progress	In progress	In progress	In progress	Not started	Not started
Magnet alignment – transfer matrix	S. Middleton	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
Magnet alignment – minimise									
residuals		Complete	In progress	In progress	Not started				
Magnet alignment – cycloid fit	C. Rogers	Complete	Complete	In progress	Complete	In progress	In progress		Not started
Beam quality	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
First emittance reduction	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Full emittance reduction	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Non-linear optics	R. Ryne	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
MCS - field off	J. Nugent	Complete	In progress	In progress	Complete	Not started	Not started	Not started	Not started
MCS - field on	C. Pidcott	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Energy loss – measurement based	R. Gardner	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Energy loss – minimise residuals	D. Maletic	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Beam polarisation	S. Middleton	Complete	Complete	In progress	Complete	Complete	Complete	In progress	In progress
-						-			

									. 71	
		Principle of	Laptop	Batch MC &	Final Run		First Analysis & Data	5		
Measurement	Coordinator	Measurement	Studies	Analysis	Settings	Data Taking	Checks	Final Analysis	Write up	
		Step IV								
Magnet Mapping - Axes	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Complete	Not started	
Magnet Mapping - Coil Geometries	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Not started	Not started	
Tracker Alignment – least squares	J. Nugent	Complete	Complete	In progress	Complete	Complete	In progress	Not started	Not started	
Tracker Alignment – residuals	C. Hunt	Complete	Complete	In progress	Complete	Complete	Complete	In progress	MICE Note	
PID Detector Alignment	F. Drielsma	Complete	Complete	In progress	Complete	In progress	In progress	In progress	MICE Note	
Beamline Commissioning – u/s	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Complete	MICE Note 476	
Beamline Commissioning – d/s	V. Blackmore	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started	
Global detector resolution	M. Uchida	Complete	In progress	Not started	Not started					
	M. Uchida/F.									
Global detector efficiencies	Drielsma	Complete	In progress	Not started	Not started					
	T. Mohayai/S.									
PID measurement – cut based	Wilbur	Complete	Complete	In progress	Complete	In progress	In progress	1 0	Not started	
PID measurement – log likelihood	C. Pidcott	Complete	Complete	In progress	In progress	In progress	In progress		Not started	
Magnet alignment – transfer matrix	S. Middleton	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started	
Magnet alignment – minimise										
residuals	S. Middleton	Complete	In progress	1 0	Not started					
Magnet alignment – cycloid fit	C. Rogers	Complete	Complete	In progress	Complete	In progress	In progress	1 0	Not started	
Beam quality	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started		Not started	
First emittance reduction	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started		Not started	
Full emittance reduction	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started		Not started	
Non-linear optics	R. Ryne	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started	
MCS - field off	J. Nugent	Complete	In progress	In progress	Complete	Not started	Not started	Not started	Not started	
MCS - field on	C. Pidcott	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started	
Energy loss – measurement based	R. Gardner	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started	
Energy loss – minimise residuals	D. Maletic	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started	
Beam polarisation	S. Middleton	Complete	Complete	In progress	Complete	Complete	Complete	In progress	In progress	

									. 71
			. .			First Analysis			
M		Principle of	Laptop	Batch MC &	Final Run	ъ с т. 1.	& Data	T. I.A. I. ·	X.7 *.
Measurement	Coordinator	Measurement	Studies	Analysis	Settings	Data Taking	Checks	Final Analysis	Write up
		-		Step I					
Magnet Mapping - Axes	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Complete	Not started
Magnet Mapping - Coil Geometries	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Not started	Not started
Tracker Alignment – least squares	J. Nugent	Complete	Complete	In progress	Complete	Complete	In progress	Not started	Not started
Tracker Alignment – residuals	C. Hunt	Complete	Complete	In progress	Complete	Complete	Complete	In progress	MICE Note
PID Detector Alignment	F. Drielsma	Complete	Complete	In progress	Complete	In progress	In progress	In progress	MICE Note
Beamline Commissioning – u/s	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Complete	MICE Note 476
Beamline Commissioning – d/s	V. Blackmore	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
Global detector resolution	M. Uchida	Complete	In progress	In progress	In progress	In progress	In progress	Not started	Not started
	M. Uchida/F.								
Global detector efficiencies	Drielsma	Complete	In progress	In progress	In progress	In progress	In progress	Not started	Not started
	T. Mohayai/S.								
PID measurement – cut based	Wilbur	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
PID measurement – log likelihood	C. Pidcott	Complete	Complete	In progress	In progress	In progress	In progress	Not started	Not started
Magnet alignment – transfer matrix	S. Middleton	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
Magnet alignment – minimise									
residuals	S. Middleton	Complete	In progress	In progress	In progress	In progress	In progress	In progress	Not started
Magnet alignment – cycloid fit	C. Rogers	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
Beam quality	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
First emittance reduction	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Full emittance reduction	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Non-linear optics	R. Ryne	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
MCS - field off	J. Nugent	Complete	In progress	In progress	Complete	Not started	Not started	Not started	Not started
MCS - field on	C. Pidcott	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Energy loss – measurement based	R. Gardner	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Energy loss – minimise residuals	D. Maletic	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Beam polarisation	S. Middleton	Complete	Complete	In progress	Complete	Complete	Complete	In progress	In progress
•						• • • • • • • • • • • • • • • • • • •	A		

Beamline commissioning

- Upstream
 - Only TOF0 was powered during beamline commissioning
 - Beam distributions look identical at TOF0 independent of Q123 currents
 - Only rate is changed
 - Existing settings appear optimal
- Downstream
 - Some studies made with TOF0 and TOF1 only
 - Optimisation for field off running
 - First pass analysis indicates not much improvement
 - Detailed analysis is ongoing
 - Reviving/refitting TOF tracks analysis
 - Further commissioning requires tracker in field

PID Detector alignment (1)

- Beam centroid
 - Look at evolution of beam centroid
 - Compare with surveyed positions
 - Consistent with survey

PID Detector alignment (2)

- Minimise residuals
 - Extrapolate tracks from tracker outwards
 - Blocked by MAUS geometry issues
 - Extrapolate tracks from EMR backwards
- Noted issue in KL extrapolation
 - Z position of KL is incorrect OR
 - Spacing of KL reconstructed hits is incorrect
- Noted issue in extrapolation of tracker tracks
 - MAUS geometry issue

Cerenkov Light Threshold

- Calculate turn on curve for CkovA and B for muon and pion samples
 - For data taken in September
 - Compare with historical data in note 473
- Observe significant discrepancy, as seen in spring 2015
- Three analyses, three analysers, three MAUS versions
- Need (Step I and Step IV) data reprocessing

PID Measurement

- Examine data and MC plots
- Look at distributions
- Define muon-like regions of parameter space
- Reject other regions

Magnet alignment to tracker

- Cycloid fit
 - Particles make tilted helix if tracker and solenoid are misaligned
 - Generates a cycloid assuming perfect solenoid and no energy loss
 - Look at tilt of cycloids particle by particle
 - Systematic error due to handedness of helix
- Kalman fit analysis to follow

General magnet alignment

- Transfer Matrix
 - Calculate transfer matrix
 - Relies on good track recon
 - Useful algorithm for accelerator side
 - Analysis on pure MC looks okay
 - Now looking at data
 - Track reconstruction causing problems

Position of beam at TKD, perfectly aligned in TKU $(M_{00} \text{ element of transfer matrix})$

General magnet alignment

Transfer Matrix

- Calculate transfer matrix
- Relies on good track recon
- Useful algorithm for accelerator side
- Analysis on pure MC looks okay
- Now looking at data
 - Track reconstruction issues
 - P-Value cut improves things; but insufficient tracks

Material Physics

- Multiple Coulomb Scattering
 - Field off approach gets worse statistics but better resolution
 - Field on approach gets better statistics but worse resolution
 - Measuring a distribution width so statistical detector errors make systematic measurement errors
 - Measurement error depends on unfolding detector resolution
 - No field-off running in the current run plan
 - Estimate 5 days of running with each material + empty absorber
- Energy loss
 - Combined track fit with all detectors, minimising residuals and allowing energy loss in the absorber
 - Track fit upstream; track fit downstream; look at difference in energy
 - Resolution is around width of energy straggling distribution
 - No existing measurement in the literature for muons around 200 MeV/c

Step I Papers

- Pion contamination paper
 - Final round of comments received from collaboration
 - Author list finalised
 - Final edits going in before submitting to journal
- EMR paper
 - Submitted to arxiv

Analysis Machinery

- Measurement coordinator for each measurement
 - Experimental settings
 - Data Analysis
- Physics shifter responsible for first data validation
 - Supported by physics devil software tool
- Physics shifter role largely successful
 - Better support by measurement coordinator helps
- Physics devil tool in process of upgrade (S. Wilbur)
 - Better integration with reconstruction software
 - Will provide all "online" recon plots, but running against "offline" recon data

Blockers

- Issues which are blocking analysis
 - Tracker reconstruction
 - Geometry
 - "Global" track extrapolation through fields
- Then data reprocessing to follow

M1/SSD

- Match coil 1 in SSD failed about a month ago
- Material physics measurements are largely unaffected
 - May be some detriment in rate
- Reduction in normalised emittance measurement needs study
- Indirect measurement should be possible
 - Project tracks to the absorber from upstream and downstream
 - Study emittance change
- Direct measurement is desirable
 - Measure emittance at the upstream and downstream tracker
 - Study emittance change
- To maintain direct measurement, seek revised optics
 - Means loosening "matching" constraints
- Details in MICE Note 475

M1/SSD – Tracking (optics optimisation)

- Consider 4 lattices
 - Lattice 1 B_z 1.2 T in solenoids, fields asymmetric
 - Lattice 2 fields symmetric, beta not constant in solenoids
 - Lattice 3 fields symmetric, beta not constant in solenoids
 - Lattice 4 fields asymmetric, beta not constant in solenoids
- Some cooling
 - But reduced performance due to non-linearities
 - Non-linear match may recover baseline performance
 - Lattice 4 has M2 US 0; M1 US 277.53

M1/SSD – Tracking (tracking optimisation)

- 200 MeV/c
- 6 mm emittance
- ~ 3.5 T in trackers
- Asymmetric focus coils
- 75.5 % transmission
- 5-6 % emittance change

- Consider 4 lattices
 - Lattice 5 $B_z <= 4 T$ in solenoids, fields asymmetric, Beta constant in SSU but beta beating in SSD
- Better cooling, reduced transmission (maybe)
 - Rogers has not done transmission analysis properly
 - Rogers optimises emittance change from TKU Station 1 to TKD Station 1
 - Liu optimises emittance/transmission from TKU Station 5 to TOF2

23

Dynamic Aperture

- Non-linear emittance growth is a thing
- What is the cause?
 - Can we give optics folks a clue as to how their lattice should be optimised?
- Look at dynamic aperture
 - 3rd order symplectic transfer map
 - Repeating single magnet lattice
 - Look at dynamic aperture over many cells

Run plan

- November 2014 run plan assumed 3 physics run periods
 - 2015/03, 2015/04, 2016/01
- Now assume magnet commissioning extends to 2015/03
- Parameter space of beta, emittance, momentum
- Previously made a grid in parameter space
 - 3 emittances * 3 beta * 3 momenta = 27 settings
- Now we make a cross shape in parameter space
 - 5 emittances + 5 beta + 5 momenta = 15 settings
 - Pending optics without M1 in SSD
 - Reduced solenoid mode for IH₂
 - No momentum scan or emittance scan in solenoid mode
 - This is done in flip mode
- Enables better understanding of the trends (more points)
- Extrapolate to get to parameter space corners
 - Material physics is only "new physics"
 - Optics is specific to MICE Step IV

December Running

Aim to

- Demonstrate high precision measurement of emittance
- Demonstrate dE/dx and scattering measurement
- Require
 - Trackers, TOFs, SSU+SSD ECE, something in the absorber
- Data taking plan
 - 2 mock data runs
 - Fill absorber
 - 1 day field off running @ 200 MeV/c
 - Field on running, momentum scan
 - Empty absorber
 - Field on running, momentum scan
 - Ramp down
 - 1 day field off running @ 200 MeV/c
- A bit more detail here
 - http://micewww.pp.rl.ac.uk/documents/161
- Not confirmed shift organisation/etc needs to start now
 26

December Running (no SS)

- WICE
- Aim to make scattering measurement with straight track data
- Require
 - Trackers, TOFs, something in the absorber
- Data taking plan
 - 2 mock data runs
 - Fill absorber
 - ~ few days field off running (TBC)
 - Empty absorber
 - ~ few days field off running (TBC)

Physics Workshop

- Optics review
 - Tuesday 8th December 10th December
 - See Ken Long slides
- Consider analysis workshop around that time also
 - Discuss the things we don't want to show the review committee
 - Alternative is follow up to December running in mid-January

Final Thoughts

- Step I papers are being pushed to the journals imminently
- Analysis has followed the data taking reasonably well
 - First pass analyses are keeping up with data taking
 - Final analyses/MICE notes pending in a number of areas
- M1/SSD issue we have options
- Ramping on "writing up" notes and papers
 - Step IV "technical description" needs functioning magnet line
 - Step IV "measurement of emittance (no cooling)" is under way
 - Likely will need more data