MICE Analysis Status and Plans

C. Rogers,

ASTeC Intense Beams Group
Rutherford Appleton Laboratory

Status

- 2015 data taking so far
- Detector alignment
- Magnet alignment
- First look at PID
- Plans
- Implications of SSD without Match coil 1
- Updated run plan
- In this session:
- "Tracker Alignment, Efficiency and Resolution" - Chris Hunt
- "Demonstration of Ionisation Cooling Update" - J Pasternak

Outline Data Plan

- Commission hardware
- Beam-based alignment of detectors with field off
- Beam-based alignment of magnets with field on
- Power one module at a time, then all magnets
- Check beam quality through the lattice
- Optics and momentum scans with/without absorber
- First pass analysis should follow data ASAP
- At least two analyses for every (major) measurement

2015 physics data

March $28^{\text {th }}-29^{\text {th }}$	Ckov momentum scan
April $19^{\text {th }}-20^{\text {th }}$	Beamline studies
April $26^{\text {th }}-27^{\text {th }}$	Beamline studies
June $2^{\text {nd }}$	Beamline studies
June $19^{\text {th }}-27^{\text {th }}$	Detector alignment (no field)
July $3^{\text {rd }}-4^{\text {th }}$	Detector alignment (no field)
July $22^{\text {nd }}-23^{\text {rd }}$	SSD at 1.5 T
September $21^{\text {tt }}-22^{\text {nd }}$	SSU at 1.5 T
September $25^{\text {th }}-29^{\text {th }}$	Ckov momentum scan
	Magnetic field remnant study
	Beam polarisation measurement
October $7^{\text {th }}$	4 T in SSU
October $14^{\text {th }}$	TOFO alignment

Summary of Data Analysis

First Analysis

Measurement	Coordinator	Principle of Measurement	Laptop Studies	Batch MC \& Analysis	Final Run Settings	Data Taking	First Analy \& Data Checks	Final Analysis	Write up
Step IV									
Magnet Mapping - Axes	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Complete	Not started
Magnet Mapping - Coil Geometries	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Not started	Not started
Tracker Alignment - least squares	J. Nugent	Complete	Complete	In progress	Complete	Complete	In progress	Not started	Not started
Tracker Alignment - residuals	C. Hunt	Complete	Complete	In progress	Complete	Complete	Complete	In progress	MICE Note
PID Detector Alignment	F. Drielsma	Complete	Complete	In progress	Complete	In progress	In progress	In progress	MICE Note
Beamline Commissioning - u/s	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Complete	MICE Note 476
Beamline Commissioning - d/s	V. Blackmore	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
Global detector resolution	M. Uchida M. Uchida/F.	Complete	In progress	Not started	Not started				
Global detector efficiencies	Drielsma	Complete	In progress	Not started	Not started				
PID measurement - cut based	T. Mohayai/S. Wilbur	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
PID measurement - log likelihood	C. Pidcott	Complete	Complete	In progress	In progress	In progress	In progress	Not started	Not started
Magnet alignment - transfer matrix	S. Middleton	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
Magnet alignment - minimise residuals	S. Middleton	Complete	In progress	Not started					
Magnet alignment - cycloid fit	C. Rogers	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
Beam quality	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
First emittance reduction	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Full emittance reduction	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Non-linear optics	R. Ryne	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
MCS - field off	J. Nugent	Complete	In progress	In progress	Complete	Not started	Not started	Not started	Not started
MCS - field on	C. Pidcott	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Energy loss - measurement based	R. Gardner	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Energy loss - minimise residuals	D. Maletic	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Beam polarisation	S. Middleton	Complete	Complete	In progress	Complete	Complete	Complete	In progress	In progress

Summary of Data Analysis

First Analysis
Measurement Coordinator

Magnet Mapping - Axes
Magnet Mapping - Coil Geometries Tracker Alignment - least squares Tracker Alignment - residuals PID Detector Alignment Beamline Commissioning - u/s Beamline Commissioning - d/s Global detector resolution

Global detector efficiencies
PID measurement - cut based PID measurement - log likelihood Magnet alignment - transfer matrix Magnet alignment - minimise residuals

```
Magnet alignment - cycloid fit
```

Beam quality
First emittance reduction
Full emittance reduction
Non-linear optics
MCS - field off
MCS - field on
Energy loss - measurement based
Energy loss - minimise residuals
Beam polarisation

V. Blackmore
V. Blackmore
J. Nugent
C. Hunt
F. Drielsma
V. Blackmore
V. Blackmore
M. Uchida
M. Uchida/F.
Drielsma
T. Mohayai/S.
Wilbur

Summary of Data Analysis

First Analysis
Measurement

Measurement	Coordinator	Measurement	Studies	Analysis	Settings	Data Taking	Checks	Final Analysis	Write up
Step IV									
Magnet Mapping - Axes	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Complete	Not started
Magnet Mapping - Coil Geometries	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Not started	Not started
Tracker Alignment - least squares	J. Nugent	Complete	Complete	In progress	Complete	Complete	In progress	Not started	Not started
Tracker Alignment - residuals	C. Hunt	Complete	Complete	In progress	Complete	Complete	Complete	In progress	MICE Note
PID Detector Alignment	F. Drielsma	Complete	Complete	In progress	Complete	In progress	In progress	In progress	MICE Note
Beamline Commissioning - u/s	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Complete	MICE Note 476
Beamline Commissioning - d/s	V. Blackmore	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
Global detector resolution	M. Uchida M. Uchida/F.	Complete	In progress	Not started	Not started				
Global detector efficiencies	Drielsma	Complete	In progress	Not started	Not started				
PID measurement - cut based	T. Mohayai/S. Wilbur	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
PID measurement - log likelihood	C. Pidcott	Complete	Complete	In progress	In progress	In progress	In progress	Not started	Not started
Magnet alignment - transfer matrix	S. Middleton	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
Magnet alignment - minimise residuals	S. Middleton	Complete	In progress	Not started					
Magnet alignment - cycloid fit	C. Rogers	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
Beam quality	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
First emittance reduction	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Full emittance reduction	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Non-linear optics	R. Ryne	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
MCS - field off	J. Nugent	Complete	In progress	In progress	Complete	Not started	Not started	Not started	Not started
MCS - field on	C. Pidcott	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Energy loss - measurement based	R. Gardner	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Energy loss - minimise residuals	D. Maletic	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Beam polarisation	S. Middleton	Complete	Complete	In progress	Complete	Complete	Complete	In progress	In progress

Summary of Data Analysis

First Analysis
Measurement

Measurement	Coordinator	Measurement	Studies	Analysis	Settings	Data Taking	Checks	Final Analysis	Write up
Step IV									
Magnet Mapping - Axes	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Complete	Not started
Magnet Mapping - Coil Geometries	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Not started	Not started
Tracker Alignment - least squares	J. Nugent	Complete	Complete	In progress	Complete	Complete	In progress	Not started	Not started
Tracker Alignment - residuals	C. Hunt	Complete	Complete	In progress	Complete	Complete	Complete	In progress	MICE Note
PID Detector Alignment	F. Drielsma	Complete	Complete	In progress	Complete	In progress	In progress	In progress	MICE Note
Beamline Commissioning - u/s	V. Blackmore	Complete	Complete	N/A	Complete	Complete	Complete	Complete	MICE Note 476
Beamline Commissioning - d/s	V. Blackmore	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
Global detector resolution	M. Uchida M. Uchida/F.	Complete	In progress	Not started	Not started				
Global detector efficiencies	Drielsma	Complete	In progress	Not started	Not started				
PID measurement - cut based	T. Mohayai/S. Wilbur	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
PID measurement - log likelihood	C. Pidcott	Complete	Complete	In progress	In progress	In progress	In progress	Not started	Not started
Magnet alignment - transfer matrix	S. Middleton	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
Magnet alignment - minimise residuals	S. Middleton	Complete	In progress	Not started					
Magnet alignment - cycloid fit	C. Rogers	Complete	Complete	In progress	Complete	In progress	In progress	In progress	Not started
Beam quality	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
First emittance reduction	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Full emittance reduction	C. Rogers	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Non-linear optics	R. Ryne	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
MCS - field off	J. Nugent	Complete	In progress	In progress	Complete	Not started	Not started	Not started	Not started
MCS - field on	C. Pidcott	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Energy loss - measurement based	R. Gardner	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Energy loss - minimise residuals	D. Maletic	Complete	In progress	In progress	In progress	Not started	Not started	Not started	Not started
Beam polarisation	S. Middleton	Complete	Complete	In progress	Complete	Complete	Complete	In progress	In progress

Beamline commissioning

- Upstream
- Only TOFO was powered during beamline commissioning
- Beam distributions look identical at TOFO independent of Q123 currents
- Only rate is changed
- Existing settings appear optimal
- Downstream
- Some studies made with TOFO and TOF1 only
- Optimisation for field off running
- First pass analysis indicates not much improvement
- Detailed analysis is ongoing
- Reviving/refitting TOF tracks analysis
- Further commissioning requires tracker in field

PID Detector alignment (1)

- Beam centroid
- Look at evolution of beam centroid
- Compare with surveyed positions
- Consistent with survey

X profile

PID Detector alignment (2)

- Minimise residuals
- Extrapolate tracks from tracker outwards
- Blocked by MAUS geometry issues
- Extrapolate tracks from EMR backwards
- Noted issue in KL extrapolation
- Z position of KL is incorrect OR
- Spacing of KL reconstructed hits is incorrect
- Noted issue in extrapolation of tracker tracks
- MAUS geometry issue

Cerenkov Light Threshold

Avrg_\#_of_CkovA_pes_v.s._momentum_PID=13

Avrg_\#_of_CkovB_pes_v.s._momentum_PID=13

- Calculate turn on curve for CkovA and B for muon and pion samples
- For data taken in September
- Compare with historical data in note 473
- Observe significant discrepancy, as seen in spring 2015
- Three analyses, three analysers, three MAUS versions
- Need (Step I and Step IV) data reprocessing

PID Measurement

- Examine data and MC plots
- Look at distributions
- Define muon-like regions of parameter space
- Reject other regions

Magnet alignment to tracker

- Cycloid fit
- Particles make tilted helix if tracker and solenoid are misaligned
- Generates a cycloid assuming perfect solenoid and no energy loss
- Look at tilt of cycloids particle by particle
- Systematic error due to handedness of helix
- Kalman fit analysis to follow

TKU θ_{x}

TKU θ_{y}

General magnet alignment

Position of beam at TKD, perfectly aligned in TKU
(M_{00} element of transfer matrix)

General magnet alignment

- Transfer Matrix
- Calculate transfer matrix
- Relies on good track recon
- Useful algorithm for accelerator side
- Analysis on pure MC looks okay
- Now looking at data
- Track reconstruction issues
- P-Value cut improves things; but insufficient tracks

Material Physics

- Multiple Coulomb Scattering
- Field off approach gets worse statistics but better resolution
- Field on approach gets better statistics but worse resolution
- Measuring a distribution width - so statistical detector errors make systematic measurement errors
- Measurement error depends on unfolding detector resolution
- No field-off running in the current run plan
- Estimate 5 days of running with each material + empty absorber
- Energy loss
- Combined track fit with all detectors, minimising residuals and allowing energy loss in the absorber
- Track fit upstream; track fit downstream; look at difference in energy
- Resolution is around width of energy straggling distribution
- No existing measurement in the literature for muons around $200 \mathrm{MeV} / \mathrm{c}$

Step I Papers

- Pion contamination paper
- Final round of comments received from collaboration
- Author list finalised
- Final edits going in before submitting to journal
- EMR paper
- Submitted to arxiv

Analysis Machinery

- Measurement coordinator for each measurement
- Experimental settings
- Data Analysis
- Physics shifter responsible for first data validation
- Supported by physics devil software tool
- Physics shifter role largely successful
- Better support by measurement coordinator helps
- Physics devil tool in process of upgrade (S. Wilbur)
- Better integration with reconstruction software
- Will provide all "online" recon plots, but running against "offline" recon data

Blockers

- Issues which are blocking analysis
- Tracker reconstruction
- Geometry
" "Global" track extrapolation through fields
- Then data reprocessing to follow
- Match coil 1 in SSD failed about a month ago
- Material physics measurements are largely unaffected
- May be some detriment in rate
- Reduction in normalised emittance measurement needs study
- Indirect measurement should be possible
- Project tracks to the absorber from upstream and downstream
- Study emittance change
- Direct measurement is desirable
- Measure emittance at the upstream and downstream tracker
- Study emittance change
- To maintain direct measurement, seek revised optics
- Means loosening "matching" constraints
- Details in MICE Note 475

M1/SSD - Tracking (optics optimisation)

- Consider 4 lattices
- Lattice 1 - Bz 1.2 T in solenoids, fields asymmetric
- Lattice 2 - fields symmetric, beta not constant in solenoids
- Lattice 3 - fields symmetric, beta not constant in solenoids
- Lattice 4 - fields asymmetric, beta not constant in solenoids
- Some cooling
- But reduced performance due to non-linearities
- Non-linear match may recover baseline performance
- Lattice 4 has M2 US 0; M1 US 277.53

M1/SSD - Tracking (tracking optimisation)

A. Liu

- $200 \mathrm{MeV} / \mathrm{c}$
- 6 mm emittance
- ~ 3.5 T in trackers
- Asymmetric focus coils
- 75.5 \% transmission
- 5-6 \% emittance change
- Consider 4 lattices
- Lattice $5-\mathrm{B}_{\mathrm{z}}<=4 \mathrm{~T}$ in solenoids, fields asymmetric, Beta constant in SSU but beta beating in SSD
- Better cooling, reduced transmission (maybe)
- Rogers has not done transmission analysis properly
- Rogers optimises emittance change from TKU Station 1 to TKD Station 1
- Liu optimises emittance/transmission from TKU Station 5 to TOF2

Dynamic Aperture

- Non-linear emittance growth is a thing
- What is the cause?
- Can we give optics folks a clue as to how their lattice should be optimised?
- Look at dynamic aperture
- $3^{\text {rd }}$ order symplectic transfer map

- Repeating single magnet lattice
- Look at dynamic aperture over many cells

- November 2014 run plan assumed 3 physics run periods
- 2015/03, 2015/04, 2016/01
- Now assume magnet commissioning extends to 2015/03
- Parameter space of beta, emittance, momentum
- Previously made a grid in parameter space
- 3 emittances $* 3$ beta $* 3$ momenta $=27$ settings
- Now we make a cross shape in parameter space
- 5 emittances +5 beta +5 momenta $=15$ settings
- Pending optics without M1 in SSD
- Reduced solenoid mode for IH_{2}
- No momentum scan or emittance scan in solenoid mode
- This is done in flip mode
- Enables better understanding of the trends (more points)
- Extrapolate to get to parameter space corners
" Material physics is only "new physics"
- Optics is specific to MICE Step IV

December Running

- Aim to
- Demonstrate high precision measurement of emittance
- Demonstrate dE/dx and scattering measurement
- Require
- Trackers, TOFs, SSU+SSD ECE, something in the absorber
- Data taking plan
- 2 mock data runs
- Fill absorber
- 1 day field off running @ $200 \mathrm{MeV} / \mathrm{c}$
- Field on running, momentum scan
- Empty absorber
- Field on running, momentum scan
- Ramp down
- 1 day field off running @ $200 \mathrm{MeV} / \mathrm{c}$
- A bit more detail here
- http://micewww.pp.rl.ac.uk/documents/161
- Not confirmed - shift organisation/etc needs to start now

December Running (no SS)

- Aim to make scattering measurement with straight track data
- Require
- Trackers, TOFs, something in the absorber
- Data taking plan
- 2 mock data runs
- Fill absorber
- ~ few days field off running (TBC)
- Empty absorber
- ~ few days field off running (TBC)

Physics Workshop

- Optics review
- Tuesday $8^{\text {th }}$ December - $10^{\text {th }}$ December
- See Ken Long slides
- Consider analysis workshop around that time also
- Discuss the things we don't want to show the review committee
- Alternative is follow up to December running in mid-January

Final Thoughts

- Step I papers are being pushed to the journals imminently
- Analysis has followed the data taking reasonably well
- First pass analyses are keeping up with data taking
- Final analyses/MICE notes pending in a number of areas
- M1/SSD issue - we have options
- Ramping on "writing up" - notes and papers
- Step IV "technical description" needs functioning magnet line
- Step IV "measurement of emittance (no cooling)" is under way
- Likely will need more data

