Current Status of RENO

(3rd CHIPP Neutrino Workshop Nov. 17-18, 2008, ETHZ, Swiss)

Soo-Bong Kim Seoul National Univ.

New Reactor Neutrino θ_{13} **Experiment** \Box CHOOZ : $R_{osc} = 1.01 \pm 2.8\%$ (stat) $\pm 2.7\%$ (syst)

□ Larger statistics

- More powerful reactors (multi-core)
- Larger detection volume
- Longer exposure

□ Smaller experimental errors

- Identical multi detectors
- Lower background
 - Improved detector design
 - Increased overburden

 \rightarrow Obtain ~1% precision !!!

RENO Collaboration

Chonnam National University Dongshin University Gyeongsang National University Kyungpook National University Pusan National University Sejong University Seoul National University Sungkyunkwan University Institute of Nuclear Research RAS (Russia) Institute of Physical Chemistry and Electrochemistry RAS (Russia)

+++ http://neutrino.snu.ac.kr/RENO

Schematic Setup of RENO at YeongGwang

Google Satellite View of YongGwang Site

Schematic View of Underground Facility

Schedule

	2006						200)7								2008					2009																
Activities			3	6	9		1	12	3	3	6		9	1	2		3			6		9)		2		3	3		6	ę	9		12	2		
Detector Design & Specification																																					
Geological Survey & Tunnel Design																																+					
Detector Construction																																					
Excavation & Underground Facility Construction																																					
Detector Commissioning																																					

Comparison of Reactor Neutrino Experiments

Experiments	eriments Location		Distances Near/Far (m)	Depth Near/Far (mwe)	Target Mass (tons)		
Double-CHOOZ	France	8.7	280/1050	60/300	10/10		
RENO	Korea	17.3	290/1380	120/450	16/16		
Daya Bay	China	11.6	360(500)/1985(1613)	260/910	40×2/80		

Summary of Construction Status

- 03~10, 2007 : Geological survey and tunnel design are completed.
- 05~12, 2008 : Tunnel construction
- Hamamatsu 10" PMTs are considered to be purchased. (expect to be delivered from March 2009)
- SK new electronics are adopted and delivered in Oct. 2008.
- Steel/acrylic containers and mechanical structure is ordered.
- Liquid scintillator handling system is being designed.
- Mock-up detector (~1/10 in volume) is made in Oct. 2008.

Rock sampling (DaeWoo Engineering Co.)

Rock quality map

- Near detector site:
- tunnel length : 110m
- overburden

height : 46.1m

- Far detector site:
- tunnel length : 272m
- overburden

height: 168.1m

Stress analysis for tunnel design

Construction for the Far Tunnel

(July, 2008)

(July, 2008)

(Aug, 2008)

1차<mark>소단</mark>

풍화암 출현

Construction for the Far Tunnel

(0 m) (Aug. 26, 2008)

(45m) (Sep., 2008)

(92m) (Sep., 2008)

(130m) (Oct., 2008)

(285m) (Oct., 2008)

Construction for the Near Tunnel

(July, 2008)

(July, 2008)

(Sep., 2008)

(40m) (Oct., 2008)

(90m) (Oct., 2008)

Construction for Experimental Hall

Prototype Detector

total ~460 tons

RENO Detector

Electronics

Conceptual design of the system

Mockup Detector

Target + Gamma Catcher Acrylic Containers

(PMMA: Polymethyl Methacrylate or Plexiglass)

Target	Diameter	61 cm		
	Height	60 cm		
Gamma	Diameter	120 cm		
Catcher	Height	120 cm		
Buffer	Diameter	220 cm		
	Height	220 cm		

Buffer Stainless Steel Tank

Design of the source driving system

Glove box 제작

Gd Loaded Liquid Scintillator

□ Recipe of Liquid Scintillator :

Aromatic Solvent	Flour	WLS	Gd-compound
LAB	PPO,	Bis-MSB,	0.1% Gd+TMHA
	BPO	POPOP	(trimethylhexanoic acid)

R&D on LAB(Linear Alkyl Benzene) properties :

□ 0.1% Gd compounds with CBX (Carboxylic acids; R-COOH)

- CBX : MVA (2-methylvaleric acid), TMHA (trimethylhexanoic acid)

Synthesis of Gd-carboxylate

 $RCOOH + NH_3 \cdot H_2O \rightarrow RCOONH_4 + H_2O$ $3RCOONH_4(aq.) + GdCl_3(aq.) \rightarrow Gd(RCOO)_3 + 3NH_4Cl$

Rinse with 18MΩ water

Dryer

precipitation

Measurement of LAB Components with GC-MS

RENO Analysis Control

- default modules data input and output, database access
 for run configuration and calibration
- Has talk-to function for changing input parameters without recompiling
- Addition of modules by user
- Modules can be set as filter module for selecting events
- Easy to use and build in RENO software environment

RENO Event Display

Mockup Event Display

Real time display: Online monitoring tool

Basic information on histograms

PMT hit display

Reconstruction : vertex & energy

• Reconstructed vertex: σ ~8cm at the center of the detector

Energy response and resolution:

Reconstruction of Cosmic Muons

Calculation of Muon Rate at the RENO Underground

		J_{μ} [cm ⁻² s ⁻¹]	<e<sub>µ> [GeV]</e<sub>
Ear	250 m	2.9×10 ⁻⁵	91.7
Гаі	200 m	8.5×10 ⁻⁵	65.2
Near	70 m	5.5×10 ⁻⁴	34.3

Calculation of Background Rates due to Radioactivity

	Concentration ⁴⁰ K (ppb)	Concentration ²³² Th (ppb)	Concentration ²³⁸ U (ppb)	⁴⁰ K [Hz]	²³² Th [Hz]	²³⁸ U [Hz]	Total [Hz]
Rock	4.33(ppm)	7.58(ppm)	2.32(ppm)	1.06	7.14	0.99	9.19
LS in Target	0.001	0.001	0.001	0.90	0.09	0.26	1.25
Target Contatiner	0.008	0.05	0.008	0.08	0.06	0.03	0.17
LS in Gamma Catcher	0.001	0.001	0.001	1.52	0.13	0.38	2.03
Gamma Catcher Container	0.008	0.05	0.008	0.07	0.04	0.03	0.14
LS in Buffer	0.001	0.001	0.001	0.08	~ 0	0.03	0.11
Buffer Tank	0.06	0.9	0.9	0.03	0.10	0.20	0.33
PMT	13.6	208.5	49.4	2.50	5.23	2.99	10.72
Total							~24

Systematic Errors

Syst	CHOOZ (%)	RENO (%)	
Reactor related	Reactor antineutrino flux and cross section	1.9	< 0.1
absolute	Reactor power	0.7	< 0.1
normalization	Energy released per fission	0.6	< 0.1
Number of protons	H/C ratio	0.8	0.2
in target	Target mass	0.3	< 0.1
	Positron energy	0.8	0.2
	Positron geode distance	0.1	0.0
	Neutron capture (H/Gd ratio)	1.0	< 0.1
Detector Efficiency	Capture energy containment	0.4	0.1
	Neutron geode distance	0.1	0.0
	Neutron delay	0.4	0.1
	Positron-neutron distance	0.3	0.0
	Neutron multiplicity	0.5	0.05
	combined	2.7	< 0.6

RENO Expected Sensitivity

10x better sensitivity than current limit

GLoBES group workshop@Heidelberg – Mention's talk

 3 first generation experiments: Double Chooz, RENO sensitivity ~ 0.02 to 0.03 (depending on sytematics, Δm² value, and backgrounds) and Daya Bay Phase I with sensitivity ~ 0.04 to 0.05 (1 year) ~ 0.03 to 0.035 (3 years)

Status Report of RENO

 \Box RENO is suitable for measuring θ_{13} (sin²(2 θ_{13}) > 0.02)

□ Geological survey and design of access tunnels & detector cavities are completed \rightarrow Tunnel construction will be finished in December, 2008.

□ RENO is under construction phase.

□ Data –taking is expected to start in early 2010.

□ International collaborators are being invited.

서울대 김수봉 교수가 이끄는 RENO 실험팀. 30여년간 관측에 실패한 미지막 중성미자 변환상수를 밝히기 위해 프랑스 중국과 치열한 경주를 벌이고 있다

T2KK Workshop

1st & 2nd Workshops on T2KK

Organizing committee

- E.J. Chun T. Kajita S.B. Kim P. Ko K. Nakamura
 - K. Nishikawa

For general information, please visit http://cont.kias.re.kr or contact psec@kias.re.kr

http://newton.kias.re.kr/~hepph/J2K

Program Committee

E. J. Chun (KIAS) T. Kajita (ICRR) S. B. Kim (SNU) P. Ko (KIAS) K. Nakamura (KEK) K. Nishikawa (KEK) H. Sobel (UCI)

Local Organizing Committee

E. J. Jeon (SNU) K. K. Joo (SNU) K. Kaneyuki (ICRR) K. Okumura (ICRR)

SNU Seal Name Lines For general information, pixese visit http://12KK.sou.ac.kr or contact kison/in/Ophys.sou.ac.kr

http://T2KK.snu.ac.kr

3rd Workshop on T2KK

Japan-Korea Joint Seminar oported by Japan-Korea Basic Scientific Cooperation Program of JSPS and KOSEF

3rd International Workshop on a Far Detector in Korea for the J-PARC Neutrino Beam

Program Committee

E. J. Chun (KIAS) K. Hagiwara (KEK) T. Kajita (ICRR) S. B. Kim (SNU) P. Ko (KIAS) K. Nakamura (KEK) A. Rubbia (ETHZ) H. Sobel (UCI) Local Organizing Committee

K. K. Joo (CNU) K. Kaneyuki (ICRR) K. Okumura (ICRR) 9/30-10/1, 2007 Site study for HK and one in Korea (N. Wakabayashi, C. Ryu) BNL-Fermilab LBL/J-PARC /Systematics at Superbeam exp. (M. Diwan, T. Ishida, P. Huber) Oscillation parameter degeneracy (S.K. Kang, J. Valle) T2KK sensitivity in resolving degeneracy (F. Dufour, C. Ishihara, N. Okamura, K. Okumura, A. Rubbia, K. Senda) NSP/Test of Unitarity (P. Ko, K. Kimura)

4th workshop at KIAS, Seoul

fall, 2009

University of Tokyo, Tokyo

For general information, please visit http://www-rccn.icrr.u-tokyo.ac.jp/workshop/T2KK07/

http://www-rccn.icrr.u-tokyo.ac.jp/workshop/T2KK07/

Site Study for the Korean Detector

□ mountains of 1,200 meters in height are found almost everywhere in the interesting region of Korea → Search for a candidate site (D.Son, T2KK05, C.Ryu, T2KK06/07)

Resolving the degeneracy: T2K-II vs. T2KK

T2K-II (Kamioka only)

T2KK (Kamioka + Korea)

degeneracies.

Octant ambiguity of θ_{23} can be resolved at 2σ if $\sin^2 2\theta_{23} < -0.97$ (almost independent of the value of $\sin^2 2\theta_{13}$ and mass hierarchy).

T2KK could resolve the 8 hold degeneracy of the oscillation parameters.

Beam Energy Profiles at Sites in Korea

A. Rubbia, T2KK07

1.0 to 3.0 degree off-axis beam available in Korea.

Given the baseline, possibility to cover 1 st & 2nd maximum depending on OA angle

Concentrate on OAI or OA2.5 in Korea and OA2.5 at Kamioka (see our talk T2KK 06)

Sensitivity of Mass Hierarchy

A. Rubbia, T2KK07

□ The longer baseline & higher rate improves mass hierarchy determination

Mass Hierarchy Determination - 4MW

Sensitivity of Liquid Ar Detector

A. Rubbia, T2KK05/06/07

OA 1.0 deg, 28×10^{21} pot, 100 kton mass

Very high sensitivity, especially in the very small $sin^2 2\theta_{13}$ region.

