ALICE

<u>Arturo Tauro</u> Werner Riegler

http://indico.cern.ch/event/436424/

Outline

- ALICE LS2 upgrade scope
- Work between now and LS2 (including YETS/EYETS)
- Work during LS2

ALICE LS2 upgrade scope

Motivation: Focus on high-precision measurements of rare probes at low p_T

- Cannot be selected by hardware trigger
- Need to record large sample of events

Goal: Pb-Pb recorded luminosity \geq 10 nb⁻¹ (plus pp and p-Pb data)

 8 x 10¹⁰ events to gain a factor 100 in statistics over the Run1+Run2 programme

Strategy:

- Read out all Pb-Pb interactions at a maximum rate of 50kHz (i.e. L = 6x10²⁷ cm⁻¹s⁻¹) upon a minimum bias trigger
- Perform online data reduction based on reconstruction of clusters and tracks
- Improve vertexing and tracking at low $\ensuremath{\mathsf{p}_{\mathsf{T}}}$
 - → New Inner Tracking System (ITS)

ALICE LS2 detector

A.Tauro - ALICE

ALICE TDRs

LS2 upgrade is detailed in 5 Technical Design Reports:

- Inner Tracking System (ITS)
- Readout and Trigger System
- Time Projection Chamber (TPC)
- Muon Forward Tracker (MFT)
- Online Offline Computing System (O²)

ALICE

ALICE

Muon Forward Tracker Technical Design Report

Post LS2 radiation load

- Vacuum pressure in LSS around ALICE of 2.3x10⁻⁸ mbar during Run1 pp resulted in excessive radiation load on the detector through beam-gas collisions
- In order to ensure that the radiation load due to beam gas collisions does not exceed the radiation load from genuine IP collisions during Run3+Run4, the vacuum pressure in the LSS must be <10⁻⁹mbar⁽¹⁾
- The following machine modifications are foreseen (LS2) in order to reduce the background in ALICE:
 - LSS vacuum consolidation to minimize vacuum pressure (TE-VSC)
 - New TDI to limit high vacuum pressure from outgassing (EN-STI)
 - Modified layout RB24 beampipe (TE-VSC)

1) Radiation Dose and Fluence in ALICE after LS2. ALICE int. note (PUB-2443). Auth.: W.Riegler, A.Tauro, A.Di Mauro, A.Alici

New collimator in IR2 region

- Bound Free Pair Production (BFPP) losses would limit the PbPb max luminosity for ALICE
- Solution: put a new collimator and short 11T dipoles <u>or</u> a collimator in the cryostat connection region. The implementation of this collimator is scheduled for LS2
- Decision after the quench test with lons at the end of this year's PbPb run

SEPTEMBER 2015

Upgrade preparation already started...

Items between now and LS2 with direct involvement of Technical Sector

- Design and procurement new central beampipe
- New Online/Offline computing farm (O²)
- New cleanroom
- New ALICE visitor centre at P2
- New dry air plant for present ITS (upcoming YETS)
- New ITS, MFT water cooling plants (construction only)

9

New central beampipe (TE-VSC)

Design & procurement schedule:

- New beampipe approved at LMC in September 2014
- Central beampipe section: OD38mm, ID36.4mm i.e. 0.8mm wall
- Engineering design completed
- Order placement: Q3 2015
- Delivery to ALICE: Q2 2017

	Present beampipe	LS2 beampipe
Outer diameter	60mm	38mm (only central part)
Wall thickness	800um	800um
Length	482cm	550cm
Beryllium length	395cm	88.8cm
Bellows/flanges	SS	AI
Nb. of supports	3	3

New Online/Offline computing farm (O²)

- O² is a new computing farm of 1750 nodes (2.4 MW)
- Cooling: different options being evaluated:
 - Custom building & mixed or primary water cooled racks
 - Built-in container & outside air cooling ("Fresh Air Cooling")
- The infrastructure costs are included in the O² project. Collaboration with EL, CV and GS
- Plan: decision by end 2016, infrastructure installation before end 2018

A.Tauro - ALICE

Cleanrooms

- ITS cleanroom (b.167): new 200m² cleanroom for the assembly of the ITS components
- TPC cleanroom (SXL2, P2): will be used for TPC upgrade. A refurbishment of the ventilation system is needed, such to improve the air quality (and possibly reach an ISO7)
- Resources: CV, (EL, GS)
- Schedule:
 - ITS cleanroom in 2016
 - TPC cleanroom in 2017-18 (design end 2015)

P2 (SXL2)

New ALICE visitor centre

- ALICE will be part of CERN
 official tours
- Redo entirely existing exhibition at P2
- Resources: GS, EL and CV
- Plan: design complete Dec 2015, implementation in 2016

Work during LS2

- Three sequential phases:
 - 1 2 months: opening Experiment + TPC/ITS/beampipe de-installation
 - 2 10 months: TPC upgrade + services modifications
 - 3 8 months: reinstall TPC/ITS/MFT/FIT/beampipe + close Experiment
- This plan foresees 5 months contingency over the LS2 duration
- We greatly rely on the availability of the CERN support groups, and in particular:
 - Transport coordination (many operations in two shifts)
 - Survey (mostly during re-installation)
 - CV & EL, VSC, ...
 - Safety coordination

① Opening Experiment + TPC/ITS/beampipe de-installation

Phase I	Duration	
Open cavern, L3 doors, comp.magnet/miniframe	3.5	
Remove ITS & beampipe	4.5	
Bring TPC to cleanroom	1	
	Total: 9 weeks	

Transport organized in 2

A.Tauro - ALICE

2 TPC upgrade

Replace all wire chambers with 4-GEM New FE electronics Work executed in P2 cleanroom – **40 weeks**

	0	
0	6	
Standard GEM (S)		

Cavern services modification in parallel (EL & MEF)

Contingency

5

Total: 40

weeks

③ Reinstall TPC/ITS/MFT/FIT/beampipe + close Experiment

Phase III	Duration	
Reinstall TPC/miniframe/MCTS	4	
Install ITS cage and new beampipe (incl.bakeout)	5	
Install & commissioning MFT/FIT/ITS	26	
Close L3 doors and cavern	1.5	
	Total: 36.5 weeks	

Survey & transport deeply involved in all these operations

Services: cabling & fibers

- Copper cabling campaigns:
 - LV & signal cables for ITS/MFT/FIT (EN-MEF)
 - Remove all cables from C-side (absorber area) (ALICE + FSU/PJAS)
 - Miniframe modification (patch panels, cables,...) (ALICE + FSU/PJAS)
- Optical fibers for Detector to O² data transfer 10'000 links (EL-CF):
 - Two types of fibers being evaluated: blowing (+splicing) or preconnectorized. It seems the pre-connectorized option is more advantageous as one do not need to do the splicing in the pit
 - Choice by end of this year
 - Possible synergies with LHCb

Services: cooling & ventilation

New ITS cooling plant

- Most probably water based
- New MFT cooling plant
 - Very similar or identical to ITS cooling plant, but separate machine
- ITS/MFT dry air plant
 - Whether needed has yet to be decided

All these plants will require control (EN-ICE) and power (EN-EL) Production before LS2, installation at the beginning of LS2, commissioning jointly with ALICE during LS2

Cooling pipes to detectors installed by ALICE

Conclusion

- ALICE will be upgraded in LS2 to read all PbPb events at 50kHz (L=6x10²⁷cm⁻¹s⁻¹) into the online system. Increase data sample of MB physics by a factor 100!
- In order to reduce the radiation load in ALICE after LS2 due to beam-gas, the vacuum in the LSS around P2 must be consolidated. New collimator is foreseen in the IR2 region to limit the BFPP losses
- Several activities scheduled from now until LS2, service groups are already at work!
- ALICE has a very dense planning for the upgrade implementation, partially organized in shifts
- Availability of transport, survey personnel and safety coordination is very important
- Services: ALICE will supervise its own FSUs/PJAS to carry some of the cabling activities, however we greatly rely on the EL and MEF cabling contracts and on the CF section for the fibers installation

THANK YOU