

Design & test of SciFi FEB

- Overview SciFi Read Out Box
- PCBs in a ROB
- TFC/ECS distribution
- Data path
- PCB design
- Master Board tests

LHCb Upgrade electronics meeting

3 September 2015

Ad Berkien, Cairo Caplan(CBPF), Mauricio Feo(CBPF)

Charles letswaard, Antonio Pellegrino, Hans Verkooijen, Wilco Vink, Rob Walet,

PCBs in a 1/2 ROB

- Master Board
 - Master GBT \rightarrow TFC/ ECS distribution
 - Data GBTs \rightarrow Data serialisation
 - Power supplies
 - Versatile link optical components
- Clusterization board
 - Clustering FPGAs
 - SCA for slow controls → Clusterization FPGAs and PACIFIC ASICs
- PACIFIC Board
 - Amplifier, shaper and ADCs, 2b/channel output based on three threshold values
- SiPM: Silicon Photo Multiplier modules
 - 2 arrays of 64 channel avalanche photodiodes

3 September 2015

ECS E-links

- Slow controls done by the SCA, which is controlled via the Master GBT e-link ports
- GBT dedicated E-Link port used for Master Board SCA
- Four E-links for each of the Clusterization boards
- One spare/debug E-link to FPGA

ECS / Slow control paths

- Master Board SCA
 - Eight VTTx GBLD I²C register settings through Data GBT
 - Eight I²C ports for Data GBT configuration
 - ADCs for board temperature monitoring
 - SPI or JTAG for re-programming FPGA
 - VTRx GBLD control through Master GBT
- Clusterization Board SCA
 - Two Clusterization FPGAs: I²C register settings
 - Four PACIFIC ASICs settings via I²C on PACIFC Boards
 - Four ADC inputs for PACIFIC and SiPM temperature monitoring
 - Four ADC inputs for SiPM Bias voltage monitoring
 - JTAG or SPI for FPGA re-programming

TFC: commands distribution

- Eight identical sets of TFC signals routed from Master GBT via FMC connector to Clusterization Boards
 - Each set contains 4 signal lines with 2 multiplexed TFC commands (80Mb/s)
- TFC commands in a set:
 - Bxid Reset
 - Fe Reset
 - Header only or-ed with BxVeto
 - Two calibration mode bits (1:0)
 - Synch Command
 - NZS Mode
 - Snapshot
- TFC commands synchronous clock connected to FPGAs
 - Eight Master GBT E-link clocks used for TFC synchronous clocks (Dclk)
- One calibration bit(2) and a Dclk synchronisation pulse via FPGA to PACIFIC

TFC: clock distribution

- GBTs used as clock fan-out tree:
 - Master GBT uses on package x-tal as reference clock
 - Master GBT clock fan-out to eight data GBTs
 - ClockDesP/N (0-7), eight deskewable clock outputs
 - Reference clock for Data GBTs
 - Data-GBT is clock fan-out to Clusterization and PACIFIC boards
 - Two clocks to each clusterization FPGA
 - Four 160 MHz clocks to PACIFIC chip
 - One clock from first data GBT to light injection system

Master GBT signal mapping

Wilco.Vink@Nikhef.nl

Data path on the front end

- Data path on a Master Board:
 - I6 x 64 channel SiPM arrays
 - Two arrays on a single SiPM module
 - Data digitized by PACIFIC ASIC
 - Clusterization of neighbouring active channels in the Clusterization FPGAs (Microsemi IGLOO2)
 - Serialised data by eight data GBTs in wide bus mode
 - Optical transmission by four versatile link VTTx devices

Wilco.Vink@Nikhef.nl

3 September 2015

PCB Design

- Master Board and Clusterization Board have the same PCB specs
 - Dielectric material: Halogen free Isola DE1568
 - Eight power and eight signal layers
 - 76um traces and clearances
 - IPC class 3 assembled
- Due to the large number of boards, PCBs are reviewed for manufacturability and testability
 - 576 Master Boards, 2304 Clusterization boards

PCB Design : DFM

- Design For Manufacturability (DFM)
 - Complex design, ten 0,8mm pitch BGAs and four 400 pins high pin count connectors
 - High density of 0402 parts under BGAs
- Board design: component placement and footprints optimized for assembly process
 - Minimize the risk of errors during assembly
 - Minimize assembly stages → minimize the cost
 - E.g. Use Pin In Paste(PIP) for through hole components → no wave soldering needed

Wilco.Vink@Nikhef.nl

3 September 2015

PCB Design : DFT

- Design For Test (DFT)
 - $^{\circ}~$ Design optimized for test during & after assembly \rightarrow High yield
 - Optimize for test connectivity between Boundary scan capable devices
 - Place test points for flying probe access, when not possible component pads can be used
- DFT stages:
 - 3DAOI : 3D Automated Optical Inspection
 - Every time after applying paste, component placement and reflow soldering process
 - Flying probe test
 - Test electrical connections and component values
 - EBST : Extended Boundary Scan Test (series production only)
 - Test electrical connections between components. Active loopback board(s) are used for routing to connectors.

146	
. 513	
	1.000
JTAG	
	69.63
	5-6-
n	
Ba	

SciFi FE boards tests

- In the Master Board tests the Mini-DAQ is being used for:
 - Configuration of the FE (ECS)
 - Fast control and clocks (TFC)
 - Monitoring of the FE (ECS)
 - Data path from FE to BE (DAQ)

SciFi FE boards tests

- Configuration of the Master GBT
 - Device is not fused (yet), Random values in registers after power on. All register needs to be programmed via external I²C port after power cycle.
 - After configuration the Master GBT can be programmed via the GBT frame IC bits.
 - Configure the first stage of the clock tree to reference clocks of Data GBTs
- All data GBTs are configured via the Master GBT and the Slow Control Adapter.
 - Configuration stored in file and written by WINCC via the MiniDAQ to the Master Board
- Configuration of the HouseKeeping FPGA
 - Identical to FPGAs on the Clusterization Boards
 - Hardware read/write tested OK, read back via MiniDAQ/WinCC needs debugging.

Data link tests

- SciFi uses GBT wide bus protocol, testing data links requires a MiniDAQ with SOL40 and TELL40 functionalities.
 - SOL40 part needed for board configuration
- Data link stable on a StratixIV based receiver
 - Send data from GBT in test mode
- Eye pattern measurement at the input of the Versatile link VTTx
 - Eye opening of 354 mV
 - Long path from clock generator → StratixIV → MiniDAQ → Master GBT → Data GBT introduces jitter.
 - Path can be optimized
 - Layout improvements possible

3 September 2015

ROB electronics cooling

- Temperature test in preparation
- Electronics will be cooled with 20°C water

