

Measuring the hyperfine splitting in anti-hydrogen to test for CPT violation

Martin Roelfs
Summer Student Session $13^{\text {th }}$ of August, 2015
Supervisor: Chloé Malbruno†

Image credits: European Space Agency \& NASA

Matter : Anti-Matter

We only need a 1:10-10 asymmetry since matter:photon density from astronomical measurements is $\sim 6 \times 10^{-10}$.

Standard model: exactly 50:50

- Why? Because it has CPT invariance.
\square We need CPT violation to explain the dominance of matter

Something's gotto give

Two parts of the experiment

Hydrogen Beam

Anti-Hydrogen Beam

Outline

- Hyperfine splitting in H and $\#$
- Hydrogen beam setup
- Outlook

Hyperfine Splitting

Hyperfine splitting gives rise to the famous 21 cm line

Origin of Hyperfine splitting

Is this the same wavelength for anti-hydrogen?

Hyperfine splitting of Ground State

Without external field

External B field

Polarization

Experimental Outline

Polarizer
(1) magnet

Spin flip
(2)

Analyzer
(3) magnet

Meanwhile, at the detector...

Hydrogen beam setup

Hydrogen beam setup

Comparison with anti-hydrogen

Hydrogen Plasma

Future - permanent sextupoles

Replace superconducting sextupoles by 1 permanent magnet array Reason: superconducting sextupoles is in use at the antimatter factory

Future

- Characterize H beam
- Velocity distribution
- Build the analyzing sextupoles
- Include RF cavity and analyzing sextupoles in setup
- Start measurements!
- Measure the σ and π resonances

Thank you for your attention

Supporting Slides

Lorentz Violation -> CPT Violation

- If CPT violation: no Lorentz Invariance!

Compare $\#$ to H

CPT turns matter into anti-matter

Addition of angular momentum

Triplet

Addition of angular momentum

$$
\begin{aligned}
& M=1 \quad M=0 \quad M=-1 \\
& \left\rangle, \frac{| \rangle+| \rangle}{\sqrt{2}},\right|>S=1 \\
& |p\rangle+|e\rangle= \\
& \oplus \\
& S=0
\end{aligned}
$$

