

Cryogenics for particle accelerators Ph. Lebrun

CAS Course in General Accelerator Physics Divonne-les-Bains, 23-27 February 2009

Contents

- Low temperatures and liquefied gases
- Cryogenics in accelerators
- Properties of fluids
- Heat transfer & thermal insulation
- Cryogenic distribution & cooling schemes
- Refrigeration & liquefaction

Contents

• Low temperatures and liquefied gases

- Cryogenics in accelerators
- Properties of fluids
- > Fleat transfer & thermal insulation
- Cryogenic distribution & cooling schemes
- Refrigeration & liquefaction

 cryogenics, that branch of physics which deals with the production of very low temperatures and their effects on matter

> *Oxford English Dictionary* 2nd edition, Oxford University Press (1989)

• cryogenics, the science and technology of temperatures below 120 K

New International Dictionary of Refrigeration 3rd edition, IIF-IIR Paris (1975)

Characteristic temperatures of cryogens

Cryogen	Triple point [K]	Normal boiling point [K]	Critical point [K]
Methane	90.7	111.6	190.5
Oxygen	54.4	90.2	154.6
Argon	83.8	87.3	150.9
Nitrogen	63.1	77.3	126.2
Neon	24.6	27.1	44.4
Hydrogen	13.8	20.4	33.2
Helium	2.2 (*)	4.2	5.2

(*): λ Point

Densification, liquefaction & separation of gases

LNG

130 000 m^3 LNG carrier with double hull

Air separation by cryogenic distillation

Up to 4500 t/day LOX

LIN & LOX

Rocket fuels

Ariane 5 25 t LHY, 130 t LOX

What is a low temperature?

 The entropy of a thermodynamical system in a macrostate corresponding to a multiplicity W of microstates is

$$S = k_B \ln W$$

 Adding reversibly heat dQ to the system results in a change of its entropy dS with a proportionality factor T

T = dQ/dS

- ⇒ high temperature: heating produces small entropy change
- ⇒ low temperature: heating produces large entropy change

L. Boltzmann's grave in the Zentralfriedhof, Vienna, bearing the entropy formula

Temperature and energy

• The average thermal energy of a particle in a system in thermodynamic equilibrium at temperature T is

$$E \sim k_B T$$

 $k_B = 1.3806 \times 10^{-23} \text{ J.K}^{-1}$

- 1 K is equivalent to 10⁻⁴ eV or 10⁻²³ J thermal energy
 - a temperature is « low » for a given physical process when k_BT is small compared with the characteristic energy of the process considered
 - cryogenic temperatures reveal phenomena with low characteristic energy and enable their application

Characteristic temperatures of low-energy phenomena

Phenomenon	Temperature
Debye temperature of metals	few 100 K
High-temperature superconductors	~ 100 K
Low-temperature superconductors	~ 10 K
Intrinsic transport properties of metals	< 10 K
Cryopumping	few K
Cosmic microwave background	2.7 K
Superfluid helium 4	2.2 K
Bolometers for cosmic radiation	< 1 K
Low-density atomic Bose-Einstein condensates	~ μK

Operating temperature & performance of superconductors

• Superconductivity only exists in a limited domain of temperature, magnetic field and current density

• Electrotechnical applications require transport current and magnetic field

• Operating temperature of the device must therefore be significantly lower than the critical temperature of the superconductor

Optimization of operating temperature for superconducting RF cavity

- Power per unit length
- BCS theory
- For practical materials
- Refrigeration (Carnot)

 $P/L \sim R_{S} E^{2} / \omega$ $R_{BCS} = (A \omega^{2} / T) \exp(-B T_{c} / T)$ $R_{S} = R_{BCS} + R_{0}$ $P_{a} = P (T_{a} / T - 1)$

⇒ optimum operating temperature for superconducting cavities is well below critical temperature of superconductor

Cryogens for superconducting devices

- <u>Helium</u> is the only practical cryogen for LTS devices
- <u>Subcooled nitrogen</u> is applicable to HTS devices at low and moderate current density
- Thanks to its general availability and low cost, <u>liquid nitrogen</u> is very often used for precooling and thermal shielding of helium-cooled devices
- In spite of its cost, <u>neon</u> can constitute an interesting alternative to subcooled nitrogen for operating HTS at high current density, and to helium for MgB₂ devices

 \Rightarrow in the following, focus on helium and nitrogen

Contents

- Low temperatures and liquefied gases
- Cryogenics in accelerators
- Properties of fluids
- > Heat transfer & thermal insulation
- Cryogenic distribution & cooling schemes
- Refrigeration & liquefaction

• Beam energy, field in bending magnets and machine radius are related by:

 $E_{beam} = 0.3 B r$ [GeV] [T][m]

At the LHC (r = 2.8 km), B = 8.33 T to reach $E_{beam} = 7$ TeV

• Superconductivity permits to produce high field and thus to limit size and electrical consumption of the accelerators

	Normal conducting	Superconducting (LHC)
Magnetic field	1.8 T (iron saturation)	8.3 T (NbTi critical surface)
Field geometry	Defined by magnetic circuit	Defined by coils
Current density in windings	10 A/mm ²	400 A/mm ²
Electromagnetic forces	20 kN/m	3400 kN/m
Electrical consumption	10 kW/m	2 kW/m

Limiting energy stored in beam

 Energy W stored in the beams of circular accelerators and colliders W [kJ] = 3.34 E_{beam} [GeV] I_{beam} [A] C [km] C circumference of accelerator/collider

⇒ building compact machines, i.e. producing higher bending field B limits beam stored energy

• Example: the LHC

$$\begin{array}{ll} \mathsf{E}_{\mathsf{beam}} = 7000 \; \mathsf{GeV} \\ \mathrm{I}_{\mathsf{beam}} = 0.56 \; \mathsf{A} \qquad \Longrightarrow \qquad \mathsf{W} = 350 \; \mathsf{MJ}\text{.} \\ \mathsf{C} = 26.7 \; \mathsf{km} \end{array}$$

Low impedance for beam stability

- Transverse impedance
 - $\begin{array}{l} \mathsf{Z}_{\mathsf{T}}(\omega) \sim \rho \; r \; / \; \omega \; b^{3} \\ \rho \; \text{wall electrical resistivity} \\ r \; \text{average machine radius} \\ b \; \text{half-aperture of beam pipe} \end{array}$
- Transverse resistive-wall instability
 - dominant in large machines
 - must be compensated by beam feedback, provided growth of instability is slow enough
 - maximize growth time $\tau \sim 1/Z_T(\omega)$ i.e. reduce $Z_T(\omega)$
 - \Rightarrow for a large machine with small aperture, low transverse impedance is achieved through low ρ , i.e. low-temperature wall

LHC beam pipe

Cryopumping maintains good vacuum

Contents

- Low temperatures and liquefied gases
- Cryogenics in accelerators

• Properties of fluids

- > Fleat transfer & thermal insulation
- Cryogenic distribution & cooling schemes
- Refrigeration & liquefaction

Properties of cryogens compared to water

Property		Не	N ₂	H ₂ O
Normal boiling point	[K]	4.2	77	373
Critical temperature	[K]	5.2	126	647
Critical pressure	[bar]	2.3	34	221
Liq./Vap. density (*)		7.4	175	1600
Heat of vaporization (*)	[J.g ⁻¹]	20.4	199	2260
Liquid viscosity (*)	[µPI]	3.3	152	278

(*) at normal boiling point

Vaporization of normal boiling cryogens under 1 W applied heat load

Cryogen	[mg.s ⁻¹]	[l.h ⁻¹] (liquid)	[l.min ⁻¹] (gas NTP)
Helium	48	1.38	16.4
Nitrogen	5	0.02	0.24

These numbers may be used for measuring heat load to a cryogen bath from boil-off flow measurements at constant liquid level

At decreasing level, the escaping flow is lower than the vaporization rate and a correction must be applied

$$\dot{m}_{out} = \dot{m}_{vap} \left(1 - \frac{\rho_v}{\rho_l} \right) < \dot{m}_{vap}$$

Amount of cryogens required to cool down 1 kg iron

Using	Latent heat only	Latent heat and enthalpy of gas	
LHe from 290 to 4.2 K	29.5 litre	0.75 liter	
LHe from 77 to 4.2 K	1.46 litre	0.12 litre	
LN2 from 290 to 77 K	0.45 litre	0.29 litre	

⇒ recover enthalpy from cold gas (i.e. moderate flow of cryogen)
⇒ pre-cool with liquid nitrogen to save liquid helium

Cooldown of LHC sector (4625 t over 3.3 km)

1260 tons LIN unloaded

600 kW precooling to 80 K with LIN (up to ~5 tons/h)

Phase diagram of helium

Helium as a cooling fluid

Phase domain	Advantages	Drawbacks
Saturated He I	Fixed temperature High heat transfer	Two-phase flow Boiling crisis
Supercritical	Monophase Negative J-T effect	Non-isothermal Density wave instability
He II	Low temperature High conductivity Low viscosity	Second-law cost Subatmospheric

He II cooling of LHC magnets allows to reach the 8 -10 T range using Nb-Ti superconductor

Enhancement of heat transfer

- Low <u>viscosity</u> \Rightarrow *permeation*
- Very high <u>specific heat</u> \Rightarrow *stabilization*
 - 10⁵ times that of the conductor per unit mass
 - 2 x 10³ times that of the conductor per unit volume
- Very high <u>thermal conductivity</u> ⇒ *heat transport*
 - 10³ times that of cryogenic-grade OFHC copper
 - peaking at 1.9 K

Full benefit of these transport properties can only be reaped by appropriate design providing good wetting of the superconductors and percolation paths in the insulation, often in conflict with other technical requirements

High thermal conductivity of the liquid suppresses boiling

Electrical heater in saturated liquid helium

He II (T=2.1 K)

He I (T=2.4 K)

Calorimetry in isothermal He II bath

 For slow thermal transients, the He II bath is quasi-isothermal: a single temperature measurement allows to estimate heat deposition/generation Q'

 $Q' = M_{bath} dH/dt|_1$

 M_{bath} can be estimated by *in situ* calibration, using applied heating power W'

 $W' = M_{bath} dH/dt|_2$

Measurement of electrical dissipation in LHC magnet subsector by He II calorimetry

1	1.92 - 1.915 -	10 W applied on Q15R1	-LQATO_15R1_TT821.POSST -LBARA_16R1_TT821.POSST		Before heating	With heating
on [K]	1.91 -	یے۔ بر اس	—LBBRA_16R1_TT821.POSST —LBARB_16R1_TT821.POSST —LQATH_16R1_TT821.POSST	∆U [J/kg]	-1.1	78
Temperature evolutio	1.905 -		LBBRA_17R1_TT821.POSST 	M [kg]	82	23
	1.9 - 1 895 -			∆U [k]]	-0.92	64.2
	1.89 -			t [s]	2880	6600
	1.885 -			W [W]	-0.3	9.7
	1.88 - 9::	30 10:30 11:30	—LBBRD_19R1_TT821.POSST Taverage	∆₩ [₩]	10	.0

→ The additional power measured by He II calorimetry is 10.0 W, corresponding to the applied electrical power
 → The method is validated and able to resolve < W

L. Tavian

Contents

- Low temperatures and liquefied gases
- Cryogenics in accelerators
- Properties of fluids
- Heat transfer & thermal insulation
- Cryogenic distribution & cooling schemes
- Refrigeration & liquefaction

Heat conduction in solids

construction materials are tabulated

Thermal conductivity integrals of selected materials [W/m]

From vanishingly low temperature up to	20 K	80 K	290 K
OFHC copper	11000	60600	152000
DHP copper	395	5890	46100
1100 aluminium	2740	23300	72100
2024 aluminium alloy	160	2420	22900
AISI 304 stainless steel	16.3	349	3060
G-10 glass-epoxy composite	2	18	153

Non-metallic composite support post with heat intercepts

5 K cooling line (SC He)

Aluminium intercept plates glued to G-10 column

Aluminium strips to thermal shield at 50-75 K

Thermal radiation

- Wien's law
 - Maximum of black body power spectrum
 - λ_{max} T = 2898 [µm.K]
- Stefan-Boltzmann's law
 - Black body
 - "Gray"body
 - "Gray" surfaces at T_1 and T_2

$$Q_{rad} = \sigma A T^{4}$$

$$\sigma = 5.67 \times 10^{-8} \text{ W/m}^{2}\text{.K}^{4}$$

(Stefan Boltzmann's constant)

$$Q_{rad} = \varepsilon \sigma A T^{4}$$

$$\varepsilon \text{ emissivity of surface}$$

$$Q_{rad} = E \sigma A (T_{1}^{4} - T_{2}^{4})$$

$$E \text{ function of } \varepsilon_{1'}, \varepsilon_{2'} \text{ geometry}$$

Emissivity of technical materials at low temperatures

	Radiation from 290 K Surface at 77 K	Radiation from 77 K Surface at 4.2 K
Stainless steel, as found	0.34	0.12
Stainless steel, mech. polished	0.12	0.07
Stainless steel, electropolished	0.10	0.07
Stainless steel + Al foil	0.05	0.01
Aluminium, as found	0.12	0.07
Aluminium, mech. polished	0.10	0.06
Aluminium, electropolished	0.08	0.04
Copper, as found	0.12	0.06
Copper, mech. Polished	0.06	0.02

Residual gas conduction

 $\lambda_{molecule}$: mean free path of gas molecules

- <u>Viscous regime</u>
 - At high gas pressure
 - Classical conduction

 $\lambda_{molecule} << d$ $Q_{res} = k(T) A dT/dx$

- Thermal conductivity k(T) independent of pressure
- Molecular regime
 - At low gas pressure $\lambda_{molecule} >> d$
 - Kennard's law $Q_{res} = A \alpha(T) \Omega P (T_2 T_1)$
 - Conduction heat transfer proportional to pressure, independant of spacing between surfaces
 - $\varOmega\,$ depends on gas species
 - Accommodation coefficient $\alpha(T)$ depends on gas species, $T_{1\prime}$, $T_{2\prime}$, and geometry of facing surfaces

Multi-layer insulation (MLI)

• Complex system involving three heat transfer processes

$$- Q_{MLI} = Q_{rad} + Q_{sol} + Q_{res}$$

- With *n* reflective layers of equal emissivity, $Q_{rad} \sim 1/(n+1)$
- Due to parasitic contacts between layers, Q_{sol} increases with layer density
- Q_{res} due to residual gas trapped between layers, scales as 1/n in molecular regime
- Non-linear behaviour requires layer-to-layer modeling
- In practice
 - Typical data available from (abundant) literature
 - Measure performance on test samples

Typical heat fluxes at vanishingly low temperature between flat plates [W/m²]

Black-body radiation from 290 K		
Black-body radiation from 80 K	2.3	
Gas conduction (100 mPa He) from 290 K	19	
Gas conduction (1 mPa He) from 290 K	0.19	
Gas conduction (100 mPa He) from 80 K	6.8	
Gas conduction (1 mPa He) from 80 K	0.07	
MLI (30 layers) from 290 K, pressure below 1 mPa	1-1.5	
MLI (10 layers) from 80 K, pressure below 1 mPa	0.05	
MLI (10 layers) from 80 K, pressure 100 mPa		

Contents

- Low temperatures and liquefied gases
- Cryogenics in accelerators
- Properties of fluids
- > Heat transfer & thermal insulation
- Cryogenic distribution & cooling schemes
- Refrigeration & liquefaction

Transport of refrigeration in large distributed cryogenic systems

Cryogenic distribution scheme: design issues

- Monophase vs. two-phase
 - temperature control
 - hydrostatic head & flow instabilities
- Pumps vs. no pumps
 - efficiency & cost
 - reliability & safety
- Use of liquid nitrogen
 - cooldown and/or normal operation
 - capital & operating costs of additional fluid
 - safety in underground areas (ODH)
- Lumped vs. distributed cryoplants
- Separate cryoline vs. integrated piping
- Number of active components (valves, actuators)
- Redundancy of configuration

The Tevatron at Fermilab, USA

Central helium liquefier, separate ring cryoline and 24 satellite refrigerators

HERA proton ring at DESY, Germany

HERA distribution scheme

Refrigeration	4.3 K		775	W		total mass flow	0.871	kg/s			
Refrigeration	40/80	K 2	0000	M C		Primary power	2845	kW			
Current lead	flow		0.5	x 10 ⁻³	kg/s	Specif. power consumption	281 V	/ (300	K)/W	(4.3	K)

RHIC at Brookhaven National Lab, USA

RHIC distribution scheme

HELIUM PRIMARY FLOW CIRCUIT FOR STEADY-STATE OPERATION. ONLY ONE OF THE RINGS IS SHOWN.

Central cryoplant and piping integrated in magnet cryostat

The LHC at CERN

LHC distribution scheme

OCryogenic plant

Cryoplants at five points, separate ring cryoline, 107 m long strings

Principle of He II cooling of LHC magnets

Cryogenic operation of LHC sector

Contents

- Low temperatures and liquefied gases
- Cryogenics in accelerators
- Properties of fluids
- > Fleat transfer & thermal insulation
- Cryogenic distribution & cooling schemes
- Refrigeration & liquefaction

Thermodynamics of cryogenic refrigeration

Minimum refrigeration work

Consider the extraction of 1 W at 4.5 K, rejected at 300 K The minimum refrigeration work (equation 2) is:

$$W_{min} = Q_i \cdot \left(\frac{T_0}{T_i} - 1\right) = 1 \cdot \left(\frac{300}{4.5} - 1\right) = 65.7 W$$

In practice, the most efficient helium refrigerators have an efficiency of about 30% w.r. to the Carnot limit.

$$\Rightarrow W_{real} = \frac{W_{min}}{\eta} = \frac{65.7}{0.3} = 220 W$$

C.O.P. of large cryogenic helium refrigerators

To make a refrigeration cycle, need a substance, the entropy of which depends on some other variable than temperature

Pressure of gas: Compression/expansion cycle Magnetization of solid: magnetic refr. cycle

> ΔQ_1 : heat absorbed at T_1 ΔQ_2 : heat rejected at T_2

 \rightarrow Refrigeration cycle A B C D

T-S diagram for helium

A Carnot cycle is not feasible for helium liquefaction

Brazed aluminium plate heat exchanger

Brake valve 0 Coolant inlet Brake cooler Coolant outlet Brake compressor impeller Thrust bearing Bearing cartridge _____ Shaft Speed sensor Turboexpander runner Radial bearing Cryogenic turboexpander Self-acting gas bearing system

LINDE KRYOTECHNIK AG

inde

Cryogenic turbo-expander

Maximum Joule-Thomson inversion temperatures

Cryogen	Maximum inversion temperature [K]
Helium	43
Hydrogen	202
Neon	260
Air	603
Nitrogen	623
Oxygen	761

While air can be cooled down and liquefied by JT expansion from room temperature, helium and hydrogen need precooling down to below inversion temperature by heat exchange or work-extracting expansion (e.g. in turbines)

Two-stage Claude cycle

Claude-cycle helium refrigerators/liquefiers (Air Liquide & Linde)

		HELIAL SL	HELIAL ML	HELIAL LL	
Nax. Liquefaction capacity without LN2		25 L/h	70 L/h	145 L/h	
Aax. Liquefaction capacity with LN2		50 L/h	150 L/h	330 L/h	
Compressor electrical motor		55 kW	132 kW	250 kW	
Specific consumption for liquefaction w/o LN2		645 W/W	552 W/W	505 W/W	
	% Carnot	10%	12%	13%	

-	
	ane styperchaik AG
101	

	Without LN ₂ precooling	With LN ₂ precooling
L70	20 – 35 l/h	40 – 70 l/h
L140	45 – 70 l/h	90 – 140 l/h
L280	100 – 145 l/h	200 – 290 l/h
LR70	100 – 145 Watt	130 – 190 Watt
LR140	210 – 290 Watt	255 – 400 Watt
LR280	445 – 640 Watt	560 – 900 Watt

LHC 18 kW @ 4.5 K helium cryoplants

Oil-injected screw compressor

Compressor station of LHC 18 kW@ 4.5 K helium refrigerator

Challenges of power refrigeration at 1.8 K

- Compression of large mass flow-rate of He vapor across high pressure ratio
 ⇒ intake He at maximum density, i.e. cold
- Need contact-less, vane-less machine \Rightarrow hydrodynamic compressor
- Compression heat rejected at low temperature \Rightarrow thermodynamic efficiency

Cold compressors for 1.8 K refrigeration

Cartridge 1st stage

4 cold compressor stages

Simplified flow-schemes of the 1.8 K refrigeration units of LHC

C.O.P. of LHC 1.8 K units

■ 4.5 K refrigerator part ■ 1.8 K refrigeration unit part

Some references

- K. Mendelssohn, *The quest for absolute zero*, McGraw Hill (1966)
- R.B. Scott, *Cryogenic engineering*, Van Nostrand, Princeton (1959)
- G.G. Haselden, *Cryogenic fundamentals*, Academic Press, London (1971)
- R.A. Barron, *Cryogenic systems*, Oxford University Press, New York (1985)
- B.A. Hands, *Cryogenic engineering*, Academic Press, London (1986)
- S.W. van Sciver, Helium cryogenics, Plenum Press, New York (1986)
- K.D. Timmerhaus & T.M. Flynn, *Cryogenic process engineering*, Plenum Press, New York (1989)
- Ph. Lebrun, An introduction to cryogenics, CERN-AT-2007-01 (2007) http://cdsweb.cern.ch/record/1012032?ln=en
- Proceedings of *CAS School on Superconductivity and Cryogenics for Particle Accelerators and Detectors*, Erice (2002)
 - U. Wagner, *Refrigeration*
 - G. Vandoni, *Heat transfer*
 - Ph. Lebrun, *Design of a cryostat for superconducting accelerator magnet*
 - Ph. Lebrun & L. Tavian, *The technology of superfluid helium* http://cdsweb.cern.ch/record/503603?ln=en
- Proceedings of ICEC and CEC/ICMC conferences