

Conventional Accelerator Magnets

Davide Tommasini CERN

- 🗺 Basic principles
- Magnet types
- Elementary design (dipole)
- 🚾 Manufacture
- Resistive magnets in CERN accelerators

Basic principles : mechanics

To squeeze or elongate an object you need a press

An elongation or compression creates a force

FORCE = pressure x section $F = P \times A$

 $\Delta L = (1/\mathcal{K}) \times F$

Basic principles : hydraulic circuit

$\Delta \mathbf{r} = \mathbf{K} \mathbf{x} \mathbf{Q}$

Little **pressure drop** across the main vessels, most is in tissues/organs

To make a fluid circulating you need a pump

A difference of pressure creates a flow

FLOW = speed x sectionQ = v x A

Basic principles : electric circuit

To produce electrical current you need a generator

A difference of voltage creates a current flow

 $CURRENT = C_{density} x \text{ section}$ I = J x A

 $\Delta \mathbf{V} = \mathbf{R} \mathbf{x} \mathbf{I}$

Little **voltage drop** across the wires, most is in the bulb

NI = $\Re x \Phi$

Little **magnetomotive force** is used in the iron, most is used in the air gap

To produce a magnetic field you need a coil

A magnetomotive force creates a magnetic flux

FLUX = field x section $\Phi = B \times A$

Basic principles : constitutive equations

H can be interpreted as "magnetizing pressure" In ferromagnetic materials small **H** creates high **B**

 $B = \mu_0 \mu_r H$ $\mu_0 = 4\pi \cdot 10^{-7} \text{ Tm/A}$

magnetomotive force is in reality "magnetizing work density"

NI = ∮H·dl (Ampère's law) ≈xΦ (Hopkinson's law)

Basic principles : magnetic field generation

 $NI = \oint \vec{H} \cdot \vec{dl} = \frac{B}{\mu_0} 2\pi r$

 $NI = H_{iron} \cdot l_{iron} + H_{air} \cdot l_{air}$ $NI = \frac{B}{\mu_0 \cdot \mu_r} \cdot l_{iron} + \frac{B}{\mu_0} \cdot l_{air}$

Basic principles : forces

Work (energy) done by a force is : $W = \Delta E = \int \vec{F} \cdot d\vec{s}$ In case of a uniform magnetic field $W_m = \frac{1}{2} \text{ B} \cdot \text{H} \cdot \text{V} = \frac{1}{2} \text{ B} \cdot \text{H} \cdot \text{S} \cdot x$ $F = \frac{dW}{dx} = \frac{1}{2} \text{ B} \cdot \text{H} \cdot \text{S}$ in air H=B/µ₀

Magnetic force is then $\approx B^2 \cdot 4 \text{ kg}_f/\text{cm}^2$

A key (2 cm²) in B = 1T \Rightarrow F = 8 kg_f B = 2T \Rightarrow F = 32 kg_f

Basic principles : forces

On a conductor immerged in magnetic field $\mathbf{F} = \mathbf{I} \cdot \mathbf{L} \mathbf{X} \mathbf{B}$

For example if a coil of 3 m length with NI= 50 000 A is immersed in a perpendicular field of B= 0.5 T

 $F = 50000 \cdot 3 \cdot 0.5 = 75000 \text{ N} = 7.5 \text{ tons}_{\text{f}}$

Introduction to accelerator physics

Magnet types : field harmonics

NORMAL : vertical field on mid-plane

SKEW : horizontal field on mid-plane

Introduction to accelerator physics

Magnet types : operation

Operation can be in steady state (DC), cycled, pulsed

A varying magnetic field produces a voltage difference (Faraday law)

This effect acts against the variation (Lenz law)

$$V = -\partial \Phi / \partial t$$

Currents are generated in electrical conducting materials:

- opposing to the penetration of the magnetic field
- producing losses

$$\delta = (\pi\mu\sigma f)^{-1/2}$$

When magnetic field varies use laminations, possibly with silicon (1-4%) to increase resistivity

Introduction to accelerator physics

Elementary design : a C-dipole

tentative pole width ~ good field region + 2.5 • gap Considering the reluctance of iron negligible with respect to that of air, NI = $\Re x \Phi = [gap/(\mu_0 x A)]x(BxA)=gap \cdot B/\mu_0$

B= 1.5 T, gap = 0.1 m \Rightarrow NI = 120 000 A

The C-dipole: saturation of iron

Introduction to accelerator physics

Manufacture : coils

Introduction to accelerator physics

Divonne, February 23-27, 2009

Introduction to accelerator physics

Divonne, February 23-27, 2009

Introduction to accelerator physics

Divonne, February 23-27, 2009

Introduction to accelerator physics

Divonne, February 23-27, 2009

Introduction to accelerator physics

Divonne, February 23-27, 2009

Normal Conducting LHC Magnets

MBW in the LHC : H-type dipole / 1

Introduction to accelerator physics

Divonne, February 23-27, 2009

MBW in the LHC : H-type dipole / 2

Introduction to accelerator physics

Divonne, February 23-27, 2009

MQW Magnets

Introduction to accelerator physics

Divonne, February 23-27, 2009

LINAC-2 Quadrupoles

Type III

Type III - Assembly

Type VII

Quadrupole Lamination

Types - I to X Core O.D. - 113 to 245 mm Core Length - 25 to 203 mm Aperture Diameter - 22 to 103 mm

Yoke half - stacked and glued 0.65 mm laminations assembled with shrunk fit outer ring then potted.

Introduction to accelerator physics

Divonne, February 23-27, 2009

Davide Tommasini : Conventional Magnets

10%

Type III - Field Measurement

PS Booster Dipoles

Spare Booster Dipole

1.4 GeV Magnet Cycle U = 3400V CYCLI CYCL 1=4048A ш D. ST I = 520A ∆U 18KV = ±0.5% U = -2600V 32 Dipole magnets for Booster Ring Magnet Weight - 12000 Kg Core Length - 1537 mm 'Thick' End Plate Aperture - 103 mm **BDL** correction Windings Magnetic flux @ 1.4 GeV operation 1.064 T compensate the 1% difference between the inner and outer rings. Yoke construction: Laminated core stacked between Laminations 'thick' end plates assembled using external welded tie bars. Lamination insulation achieved through a phosphatizing process. Welded tie Bars **Booster Ring** Booster to PS LINAC to Booster

Introduction to accelerator physics

Divonne, February 23-27, 2009

Davide Tommasini : Conventional Magnets

Installed Booster Dipole

Main units PS, combined function

Introduction to accelerator physics

Divonne, February 23-27, 2009

Combined function dipole / quadrupole, PS machine

Septum magnet East Experimental area

Massive yoke, DC operated, 1.4 T in the gap, ferromagnetic chamber with μ -metal shield around the north beam

High current density (80 A/mm2), 50 turns, 1300 A, high cooling capacity of 15.6 m3/h

Magnet with solid yoke parts assembled with bolts.

Main parameters		
Name	MDX	
Туре	Vertical correcting dipole	
Installation	SPS experimental area	
Nominal peak field [T]	1.33	
I _{max} [A]	240	
Résistance [Ω]	0. 305	
Inductance [H]	0. 221	
Yoke lenght [mm]	400	
Gap [mm]	80	
Total weight [kg]	1000	

Corrector dipole in TI2 and TI8 LHC injection lines

Magnet with glued laminated yokes assembled with bolts.

Main parameters		
Name	MCIA V	
Туре	Vertical correcting dipole	
Nominal peak field [T]	0.26	
I _{max} [A]	3.5	
N. Of turns	1014	
Résistance [Ω]	13.9	
Yoke lenght [mm]	450	
Gap [mm]	32.5	
Total weight [kg]	300	

Main dipole in the SPS

Magnet with laminations welded in a steel envelope H-type dipole, half-yokes assembled with welded plates

Main parameters	
Name	MBB
Туре	Bending dipole
Nominal peak field [T]	1.8
I _{max} [A]	4900
N. Of turns	16
Résistance [Ω]	4.46 . 10 ⁻³
Inductance [H]	0.018
Yoke lenght [mm]	2225
Gap [mm]	52
Total weight [kg]	17400

Corrector dipole for E-Cloud experiment in SPS

Magnet with laminations welded in a steel envelope half-yokes assembled with bolts.

Main parameters		
Name	MDVW	
Туре	Vertical correcting dipole	
Nominal peak field [T]	0.266	
I _{max} [A]	55	
N. Of turns	2 x 50	
Résistance [Ω]	1.76	
Inductance [H]	1.12	
Yoke lenght [mm]	429	
Gap [mm]	200	
Total weight [kg]	1100	

Corrector dipole for BBLR experiment in SPS

Water-cooled magnet with plain conductor coils equipped with external water circuit.

Main parameters	
Name	MCVA
Туре	Vertical correcting dipole
Nominal peak field [T]	0.059
I _{max} [A]	5
Résistance [Ω]	12.5
Yoke lenght [mm]	400
Gap [mm]	170
Total weight [kg]	130

Corrector dipole for BBLR experiment in SPS

Air-cooled magnet

Main parameters		
Name	MCVA	
Туре	Vertical correcting dipole	
Nominal peak field [T]	0.059	
I _{max} [A]	5	
Résistance [Ω]	12.5	
Yoke lenght [mm]	400	
Gap [mm]	170	
Total weight [kg]	130	

Quadrupole of TT40 (SPS to CNGS)

Water-cooled magnet with insulators

Moulded insulating distributor

Separated insulators

Main parameters	
Name	QTL
Туре	Quadrupole
Nominal gradient field [T/m]	24
I _{max} [A]	416
N. Of turns	4 x 42
Résistance [Ω]	0.276
Inductance [H]	0.390
Yoke lenght [mm]	2990
Inscribed radius [mm]	80
Total weight [kg]	9900

Water-cooled magnet without insulators (insulating hoses).

Main parameters	
Name	MQI
Туре	Quadrupole
Nominal gradient field [T/m]	≥ 53.5
I _{max} [A]	530
N. Of turns	4 x 11
Résistance [Ω]	0.036
Inductance [H]	0.013
Yoke lenght [mm]	1400
Inscribed radius [mm]	16
Total weight [kg]	1070

Spectrometer magnet in T7 line (LHCb)of East Hall

MEP 122B	Parameter	Value
65 TONS	Aperture	500 mm
	Nominal field	1.4 T
	Pole width	1000 mm
	Pole length	1000 mm
	Weight	65 t
	Power	750 kW

Introduction to accelerator physics

Divonne, February 23-27, 2009

Recommended reading

Permanent Magnet Materials and their Application

PETER CAMPBELL

Iron Dominated Electromagnets

Design, Fabrication, Assembly and Measurements