T2K Near Detectors

Masashi Yokoyama (Kyoto) for T2K-ND280 group

* Search for v_e appearance from v_{μ} beam

sin²2θ₁₃ to 0.008 (factor ~20 improvement over CHOOZ)

* Search for v_e appearance from v_{μ} beam

- sin²2θ₁₃ to 0.008 (factor ~20 improvement over CHOOZ)
- * Precision measurements of v_{μ} disappearance
 - * 1% in $\sin^2 2\theta$, 3% in Δm^2

* Search for v_e appearance from v_{μ} beam

- sin²2θ₁₃ to 0.008 (factor ~20 improvement over CHOOZ)
- * Precision measurements of v_{μ} disappearance
 - * 1% in $\sin^2 2\theta$, 3% in Δm^2
- To achieve these precise measurements, understanding of v beam and interaction indispensable!

Near Detectors @ 280m

- Predict events (signal&BG) @ Super-K
- * off-axis angle \rightarrow on-axis detector
- * v_{μ}/v_{e} flux, energy spectrum \rightarrow off-axis tracker
- * π^0 production \rightarrow off-axis π^0 detector

Near Detectors @ 280m

Predict events (signal&BG) @ Super-K

- * off-axis angle \rightarrow on-axis detector
- * v_{μ}/v_{e} flux, energy spectrum \rightarrow off-axis tracker
- * π^0 production \rightarrow off-axis π^0 detector

* Off-axis scheme: 1 mrad $\leftrightarrow \sim 20$ MeV shift in Ev @ SK

lm

~0.3 events/ton/spill

~10m

◆ Direct monitor of v direction (MUMON sensitive to Eµ>5GeV)
◆ 7+7 modules of Fe+scintillator tracker to cover large area

10cm Fe x 10 layers

4 (also surrounded by veto planes)

- Beam direction measured with ~0.15mrad precision @ 1% intensity, 1 month (MC)
- Detector component to be tested
- Engineering design ongoing

Reuse UA1 magnet
 (0.2T dipole)

Reuse UA1 magnet
 (0.2T dipole)

 Reuse UA1 magnet (0.2T dipole)
 Tracker (FGD+TPC) for CC measurements

 * Reuse UA1 magnet (0.2T dipole)
 * Tracker (FGD+TPC) for CC measurements
 * POD for π⁰ production

 Reuse UA1 magnet (0.2T dipole)
 Tracker (FGD+TPC) for CC measurements

* POD for π^0 production

 ECAL and SMRD surrounding IR for EM/muon

 Reuse UA1 magnet (0.2T dipole)
 Tracker (FGD+TPC) for CC measurements

* POD for π^0 production

 ECAL and SMRD surrounding IR for EM/muon

Photosensor

EndCaps

π^0 detector (POD)

Water Target

SciBars

'water rich' part

(where required)

Absorber

* Measure π^0 production cross section

Scintillator+Pb layers

 Upstream 2/3 interleaved with water target

* ~60K single π^0 events expected with 10²¹ POT

Fine Grain Detector (FGD)

Provide active target (~1.2 tons / module) to tracker part by plastic scintillator (a la K2K-SciBar)

- * 1x1cm² segmentation, 192x192x30cm³ module
- Two modules
 - One fully scintillator
 - The other interleaved with H₂O target
- ★ ~4x10⁵ events
 expected with 10²¹ POT

FGD scintillator prototype @ TRIUMF

TPC

Measure momentum of charged particles coming out of FGD

- \$ <10% resolution below</p>
 1GeV/c
- Also provides PID by dE/dx

 Chosen micromegas as gas amplification system

 Prototype working, technical design being fixed

Three identical modules

100K channels in total

ECAL

10

EM measurement for pi0 and nue measurements.

* Lead-scintillator sampling calorimeter

* $10X_0$ around tracker

* ~ $4.5X_0$ around POD

* ~12 X_0 downstream

 Design optimization ongoing

Side MRD

- Instrument gaps of magnet yoke to measure muon range
- * Also provides trigger for calibration
- Prototype test soon
- * Installation scheme being developed
 - * Measurement of UA1 yoke gaps

sgintillator prototype @ Russia

Photosensor

All but TPC will use scintillator + WLS fibers Magnetic field, limited space, many channels Development of new photo-sensors!

Multi-Pixel Photon Counter by Hamamatsu, Japan 12 MRS-APD by CPTA, Russia

Photosensor status

 Excellent photon counting capability. * Gain 10^5 - 10^6 with <100V voltage HPK311-53-1A-002-1 * Photon yield \geq PMT entries 006 006 * Noise ~<1MHz (>0.5p.e.) 700 600 500 Shifting to mass-production 400 300 * Quality control 200 100 * Connection to WLS fibers 180 200

Schedule

	2006		2007				2008				2009			
	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Technical review						512								
ND hall excavation														
Magnet Install														
Building construction														
On-axis installation														
Tracker installation														
Beam start									Apr	: 1, :	2009			
POD/ECAL installation	on													

* Not shown: development/production of each sub-detector * Also need hard work!