Operational Experience with the CNGS Beam Position Measurement System

OUTLINE

- 1. Introduction to the CNGS BPM system
- 2. Laboratory results
- 3. Performance of the system with beam
- 4. Problems encountered during commissioning
- 5. Summary

The CNGS Beam Line Position Monitors

CNGS Beam Position Measurement Requirements

source	rms uncertainty	tolerance
BPM (global accuracy)	0.25 mm	\pm 0.5 mm
Alignment	0.20 mm	\pm 0.4 mm
Total	0.32 mm	\pm 0.6 mm

Intensity Range: 1×10^{12} to 3.5×10^{13}

The CNGS Target Beam Position Monitor

- Coupler Body
- Aluminium alloy
- lowers remnant radiation

Outer Surface Treatment

- penetrating oxide layer
- withstands radiation effects
- gives thermal stability

Inner Surface Treatment

- 30µm gold layer
- withstands radiation effects
- maintains good conductivity

Feedtroughs

- Ceramic dielectric (vac seal)
- simple 50 Ω construction

5th September 2006 NBI2006 - Thierry Bogey, Rhodri Jones & Ralph Steinhagen (CERN - AB/BI)

CNGS Beam Position Measurement Acquisition System

- Each signal is compressed by a logarithmic amplifier, filtered and applied to a differential amplifier.
- The position response is: Pos = [log(A/B)] = [log(A)-log(B)] = (V_{out}) where V_{out} is the voltage difference between the log-amp outputs

5

CNGS Beam Position Measurement Front-end

CNGS Beam Position Measurement Acquisition System

Based on LHC BPM system:

- ⇒ VME64x Digital Acquisition Board
 DAB64x (TRIUMF, Canada)
- ⇒ Altera Stratix (EP1S20) FPGA
 use same code as for LHC BPMs
- \Rightarrow Mezzanine Card
 - receives info from 6 front-ends
 - performs manchester decoding
 - Xilinx FPGA treats data to give correct input for DAB64x
- \Rightarrow Final configuration
 - 2 DAB64x with 2 mezzanines
 - processing data from 23 CNGS PUs

CNGS Beam Position Measurement Acquisition System

Why this choice of front-end?

- \Rightarrow low cost as it requires only 1 coax cable per pick-up.
- \Rightarrow large dynamic range without requiring gain switching.
- \Rightarrow simple engineering
- ⇒ auto-triggered no requirement for external timing in the tunnel

Why this choice of digital acquisition?

 \Rightarrow uses standard LHC BPM digital acquisition card

- software architecture already in place
- guarantees hardware & software support

 \Rightarrow minimal development for CNGS team

- develop a single (relatively simple) mezzanine board to convert CNGS signal to compatible format

Combining a Button Pick-up with a Log Amp Acquisition System

5th September 2006 NBI2006 - Thierry Bogey, Rhodri Jones & Ralph Steinhagen (CERN - AB/BI)

Laboratory Results of the CNGS BPM System

Linearity of Complete BPG Measurement Chain

Performance with Beam -One Day CNGS Beam Stability

10

Performance with Beam -Stability of CNGS Target BPM Reading

Performance with Beam -Target Position Reading with Intensity

5th September 2006

Problems Encountered During BPM Commissioning

Auto-trigger Circuit:

- No triggers at all for low intensity & haphazard triggering for high intensity
 - \Rightarrow Same circuit used for years in PS to SPS transfer line
- Circuit tested with circulating beam in SPS
 - \Rightarrow Trigger found sensitive to bunch length & batch structure

Problems Encountered During BPM Commissioning

Auto-trigger Circuit (cont):

- Diagnosis
 - ⇒ Short bunch lengths produced switching times which were too fast for the auto-trigger circuit to deal with.
- -Solution
 - \Rightarrow At first possible access, all front-end cards were removed
 - \Rightarrow All were modified with a quick-fix & re-installed within 1 day
- Performance after quick-fix
 - ⇒ Correct functioning for high intensity, still a few circuits which did not trigger all the time with very low intensity
- Longer Term Solution
 - ⇒ Re-design of auto-trigger circuit based on this experience with beam!

Problems Encountered During BPM Commissioning

Other Problems:

- Large offsets in 2 monitors after 1 week of running
 - \Rightarrow Suspected short circuits in recuperated LEP buttons.
 - \Rightarrow Will attempt to "burn away" shorts using HV discharge.
- Last two line monitors seen to give spurious readings on first shots when beam turned back on after being off a few cycles
 ⇒ Currently no explanation for this based on BPM system.
 ⇒ Same front-end crate as 3 other monitors which work OK
 ⇒ Requires more study with correlation between BPM & BTV to determine if it's beam or monitor related

5th September 2006 NBI2006 - Thierry Bogey, Rhodri Jones & Ralph Steinhagen (CERN - AB/BI)

Commissioning of the CNGS BPM System

Summary of NBI2005 - Open Issues

- Linearity of BPM system
 - \Rightarrow Similar front-end gives good results in PS to SPS line
 - \Rightarrow Test bench available once electronics ready
- Performance of target pick-up in air
 - \Rightarrow Will only be possible to evaluate with beam!

Summary of NBI2006

- Linearity of BPM system
 - \Rightarrow Accuracy seen to be better than 250 μm over ±10mm range
 - \Rightarrow Resolution at the 20 μm level for nominal beam
- Performance of target pick-up in air
 - \Rightarrow Performs with the same characteristics as the line BPMs
- Problems encountered during commissioning
 - \Rightarrow A few teething problems that will be solved for future runs