CNGS - Extraction

Extraction Studies with CNGS Beam

V.Kain, Input from: B. Goddard, E. Gaxiola, M. Meddahi, Helmut Vincke, Heinz Vincke, J. Wenninger

Contents:

- Introduction Fast Extraction in SPS Point 4 (LSS4)
- Constraints
- Calibration Measurement Results during CNGS Commissioning
- Normal Operation Extraction Beam Losses
- Machine Protection
- Summary

Introduction – Fast Extraction in LSS4

Extract 2 x 10.5 μs long SPS batches, nominally 2.4e+13 protons per batch at 400 GeV

EQUIPMENT:

- 5 extraction kicker magnets (MKE):
 - rise time: 1 μ s, kick length: 11.3/12.1 μ s, voltage: 50 kV
- 6 septum magnets (MSE)
- TPSG protection element for MSE
- 4 extraction bumper magnets:
 - 31.5 mm extraction bump
- enlarged aperture quadrupole
 magnets
- instrumentation

SPS

Constraints (1)

- Aperture for circulating bumped beam
 - design: 9.3 σ
- Aperture for TPSG/MSE for extracted beam
 - design: 6.5 σ
- Losses during extraction \bullet
 - below 0.1 % of nominal (radiation)

18

V. Kain AB/OP

half aperture bump (sigma)

Constraints (2)

- Radiation limits in ECA4 (free access during beam operation):
 - -5μ Sv/h (corresponds to beam loss on TPSG of about 0.1% of nominal)

Calibration – Measurement Results during CNGS Commissioning (1)

<u>Measured Beam Loss Profiles on</u> <u>BLM1 – BLM8</u>

• Measurements with low intensity:

- Intensities ~ 3e+11 2e+12
- Beam loss per proton from circulating beam 1)
 - via increasing bump amplitude
- Beam loss per proton from extracted beam 2)
 - via decreasing kicker voltage
- Outcome:
 - Beam loss on the inside of the TPSG leads to higher beam loss signals.
- Normal operation loss: most likely swept beam
 - Combination of 1) and 2)
 - Beam loss profile combination of 1) and 2)

Beam loss per 10^10 protons for extracted and circulating beam

Calibration – Measurement Results during CNGS Commissioning (2)

Aperture Measurement

- Result for circulating beam (increasing bump):
 - TPSG edge ~13 mm from beam center
 - ~ 8.3 nominal sigma (design: 9.3 sigma)
- Result for extracted beam (decreasing kicker voltage):
 - TPSG edge ~ 10.6 mm from beam center
 - ~ 6.8 nominal sigma (design: 6.5 sigma)

Relative losses at TPSG vs. beam position 0.8 0.7 relative lost beam 0.6 0.5 0.4 0.3 0.2 0.1 0 41.5 42 42.5 43 43.5 44 position at TPSG [mm]

• Apertures are OK

NBI 05Sept06

Calibration – Measurement Results during CNGS Commissioning (3)

Radiation in ECA4:

First comparison between simulation and measurements for a loss of 1.26e+11 protons @ 400 GeV/c on TPSG

	Latest calculation prediction	Measurement
Top of shielding	~ 1230 nSv	~ 700 nSv
Barracks	~ 30 nSv	~ 20 - 27 nSv
ECA4 floor (entrance TT40)	~ 30 nSv	~ 14 - 20 nSv

Possible explanations of difference between simulation and measurement:

- real wall thickness 4.8m 5m, simulated wall thickness: 4.8m (conservative approach)
- new wall (40 cm) at "ECA4 maze exit" not considered in calculation
- detectors are calibrated to AmBe source

7

Normal Operation – Extraction Beam Losses (1)

- Nominal losses are between:
 - 0.05 % ... scaled with circulating beam loss pattern
 - 0.39 % ... scaled with extracted loss beam pattern
- Extraction related losses stem "only" from beam in gap
 - gap cleaned with first extraction (during fall and rise time of kicker)
 - no losses on second extraction

Comparison of Loss Patterns

Beam loss on TPSG over 9 h operation (~1.7e+13 protons per extraction)

Normal Operation – Extraction Beam Losses (2)

The monitors show maximum radiation values of 1 μ Sv/h in accessible regions.

H. Vincke

					1000																												- CONTRACT			
		· · · · ·	*** ***		 - 900																							 			·			- www		
			100 AURO	***	 																							 								
- C - C - C - C - C - C - C - C - C - C					100 C 100 C	 	1000 B																					 								
					 	 		84.84																			240804	 1010104	 				600 IO-000			
						 		800 B.S.S.																				 		2000 C	_					
	_	_			 	 																						 	 							
		_			 	 																						 				_				

Extraction related Machine Protection (1)

- Nominal intensity for CNGS extraction ~ factor 10 above damage limit of equipment.
- Machine protection system in place to protect extraction and transfer line equipment.
- In this talk only extraction machine protection covered.
- Passive protection + active protection
 - Passive: TPSG absorber in front of septum magnets.
 - Active: interlocking system (monitoring of critical parameters).
 - If threshold is exceeded, extraction is not permitted.

Extraction related Machine Protection (2)

Extraction equipment interlocking

- Girder position interlock (+/- 2mm)
 - Protection of MSE with TPSG
 - 110 mm nominal position
- MKE voltage interlock (+/-2kV)
 - 1 kV change corresponds to ~ 1 mm change at TPSG
- Bumped beam position (BPCE) interlock
 - +/- 1 mm
- Beam loss monitors in LSS4 threshold interlock:
 - Thresholds on BLM1-BLM8 to respect loss limit 0.1% of nominal
 - 38, 18, 18, 18, 18, 18, 18, 18 mGy
- Fast Magnet Current Change Monitor (FMCM) for the MSE:
 - Threshold on current change of < 0.2 %

Likely Failure Scenarios: Extraction Kicker Failures

- Failure scenarios
 - MKE erratic (main switch)
 - MKE missing
 - MKE erratic (clipper switches)
 - Sweep (timing error)
- Experiment: MKE 80 % kick, low intensity
 - corresponds to one kicker out of 5 missing
- Outcome:
 - big oscillations down the line (peak > 10 mm); target out of tolerance
 - no beam loss in TT41during test
 - might be due to gain of monitors with low intensity
 - \rightarrow for nominal intensity, losses in TT41 are <30 mGy.
 - TPSG/MSE high losses, but MSE protected

Summary

- The extraction is set up "cleanly" in the transverse plane
- "All" losses stem from beam in gap
 - Losses are acceptable concerning radiation in ECA4.
- Machine protection systems are in place to protect extraction equipment and line.
 - What about the target during kicker failures (2 mm excursions)?
- Outstanding issues:
 - Confirm "gap-losses" hypothesis (extract only second batch?)
 - Monitoring of gap population
 - Kicker gap cleaning to remove losses during extraction: with transverse damper?

- ...

MKE kicker system in LSS4

Status July 20, 2006

- End of June: main switches M2, M5 erratic problems;
 - Situation improved with grounding and conditioning.
- Up to July 15th: clipper switches erratic problems + contact erosion + divider resistors;
 - Aluminum contact changed all installed switches;
 - Divider resistor (top) changed all clipper switches;
 - Divider resistor (bottom) changed C1 and C2.
- On July 15th: 1 spark in magnet #2.
- Statistic since July 15th
 - 36 hours (WE) + 12 hours (night);
 - No clipper erratic;
 - 2x M2 interlock (problem with setting tables).

. Ducimetiere