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Targets— How far can they go?

1MW ?

Answer isYESfor several materials

Irradiation damage is of primary
concern

Material irradiation studies pushing
ever closer to anticipated atomic

displacements while considering new
alloys are needed

4 MW ?
Answer dependant on 2 key parameters:
1—reprate
2 - beam size compliant with the physics sought

A1l: for rep-rate > 50 Hz + spot > 2mm RMS = 4
MW possible (see note below)

A2: for rep-rate < 50 Hz + spot < 2mm RMS
=> Not feasible (ONLY moving targets)

NOTE: While thermo-mechanical shock may be
manageable, removing heat from target at 4 MW might
prove to be the challenge.

CAN only be validated with experiments
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4 MW proton driver?

Protons per pulse required for 4 MW Some schemes desired bunch lengths< 3 ns !!!
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Target Concept — Neutrino Superbeam
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Challenges = R&D

Target/Horn
Integration concept
of FRONT END

Helium INTO annular
target’horn space

Insulator detail
coupling neutrino
target with horn

Target/Horn/Insulator

Target model

including baffle (front)

part and end details
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Liquid metal targets?

No rad damage, no shock concerns =» free of problems?
— phasetransitionsduring beam interaction
— vaporization
— effectson infrastructure
— delivery & quality of interaction zone

However, even with liquid targets we are not home free from solid targets!!!

We haveto deliver the same beam trough widows
If not aliquid jet but a contained liquid =¥ cavitation-induced erosion (pitting)

NBI 2006 - CERN



Yoy rt: Experimental Process
Utilizing BNL Accelerator Complex o oo

Irradiation at BNL
| sotope Facility~place
200 or 117 MeV protens

BEAM on Targets

2 LNAC

Schematic of BLIP Beam Line

Post irradiation analysis at
BNL Hot Labs

Thermal Expansion/Heat
Capacity Measuring System

Laser Flash System (under construction)
for thermal diffusivity measurements
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BROOKHRAEN Phases of Irradiation Studies

Super Invar and Inconel-718

PHASE |I:

* 3D Carbon-Carbon Composite
* Toyota®“Gum Metal”
* Graphite (1G-43)

* AlBeMet PHASE |l-a:

» Beryllium

« Ti Alloy (6Al-4V) *2D Carbon-Carbon
* Vascomax

* Nickel-Plated Alum.

PHASE |11 Proton Beam Footprint (1a)
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___-am,= Box3
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« Graphite/titanium bonded tar get /4 ﬂ
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NBI 2006 - CERN



§N0 Fag,
& =

NATIONAL LABORATORY

&
Pon con®

Specially bonded graphite/titanium specimens exposed to
proton irradiation — Post-irrad analysis pending

o \"n

AN 00606707, 14: 762760
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What was observed during post-irradiation analysiswasintriguir &£~
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Annealing behavior also exhibited by 2D Carbor %%

Fiber (Stfong) direction Weak direction (orientation normal to fibers)
60
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* Non-irradiated shown in BLACK

« Effects of irradiation (captured in 1% post-irradiation thermal cycle) shown in RED
* Rest are additional thermal cyclesthat restore material through annealing

* Also shown are specimen activationsin mcCi

* Worth noting isthe similar annealing behavior of specimenswith same activation
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Questions to be answered regarding annealing =~ e

° HOW iS irradiation damage |nﬂ Uenced by Recovery of damaged microstructure in 404 .St'iEI through annealing
h| h temperatures duri n irradia[ion and (neutron fluence of 1.4 E+24 nim*2)
i f gles Whré,-re ISthe threshgold ol e L

High density of | Reduce of Formation af Dislocation Farmaticn af

— Identifying the temperature threshold will e B ottt | | = L
alow for life extension of the material in the 3 :
irradiation environment

» Do materials exhibit similar damage

following annealing and re-irradiation ?

—  Studies from neutron exposure indicate that
the number of voids, while decreasein size,
Increase in number during re-irradiation

— To address that, irradiated and then annealed from Y. Ishivama et al, J. Hucl. Mirls 239 90-94 (1996)
super-Invar has been exposed to irradiation
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The high expectations of gum metal
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... Irradiation damage on 2D composite and nickel-plated aluminum Pon oon®

Serious degradation of magnetic horn material
(nickel-plated aluminum) used in the NuMI experiment at FNAL!
Retested during Phase |11 with double the exposure and waiting examination
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Jet traverses

LIQUID JET TARGETS

max

This qualitative
behaviour can be
observed in all

E951 Experiment

(focus on Hg jet delivery and interaction
with 24 GeV protons, hg/nozzle interaction)

B
10 B .?' 9’

Mercury jet interaction with 24 GeV
3.8 TP beam of the E951 experiment

conut esy A. Fabisch)

MERIT Experiment

proton beam/high velocity Hg jet interaction
in a 15 Teslamagnetic field
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Hg Jet Destruction & Viewing Window Safety Analysi< 4,

KE =1pdlUZ =AP 6(dl)

Sapphire Window

AP = a, AT/k
a, = (OV/0T)p

odl’) = o, dl" AT

k\ U2/ =2a AT .
A —

U, = N2 [o,. AT ] ¢ V=200 mis

Beam-induced Hqg jet destruction
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SUMMARY

« Solid targets, regardless of the physicsthey will support, areinherently
coupled with material R& D (shock and irradiation damage)

* Information to-date available from low power acceleratorsand mostly
reactor (neutron irradiation) experience. Extrapolation isrisky!

« Advancementsin material technology (alloys, smart materials,
composites) provide hope BUT must be accompanied by R& D for
Irradiation damage

 Liquidtargets(Hgjets) may present avalid option initiative BUT the
necessary experiments of theintegrated system must be perfor med
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