T.Ishida (IPNS, KEK)

Status of the T2K Hadron Absorber Development

- KEK IPNS T.Ishida / Y.Oyama / M.Tada Y.Yamada / H.Yamaoka CCLRC RAL C.J.Densham / V.B.Francis D.L.Wark KEK MEC S.Koike
- Base design for the hadron absorber core and the helium vessel
- 2. Analysis results for vessel and shields
- 3. Summary, Schedule

05.11.18 at the point where the beam dump will be installed

- Material property measurements and basic cooling tests finished.
- Heat and stress simulations for the hadron absorber core have been done and a base design has been established.
- Base drawings both for the core and for the helium vessel which encloses the core have been drawn taking installation and construction scenario into account.

JFY2006

 Tender has been done for the graphite production. A successful bid with spec as planned, 49 x 2.4 m bars of SEC Co. PSG-324.

- Cover off axis angle between 2degree to 2.5 degree
- Goal: cool down 1MW heat loss for future MW operation (without maintenance in dump pit area !)

The T2K Hadron Absorber

EUTRINO FACILITY

AT J-PARC

T.Ishida (IPNS, KEK)

NBI06, CERN, September 2006

Core Assembly

- The blocks will be piled up and fastened to Al cooler from bottom to top on a base frame.
- The core units loosely supported by a steel frame to allow thermal expansion.
- Top of the graphite blocks is held by iron plates + spring washer, in order to bear for the earthquake.

A Core Unit

NBI06, CERN, September 2006

NBI06, CERN, September 2006

Tensile Strength at High Temperature

T.Ishida (IPNS, KEK)

Tensile Strength: 7~8.5MPa(//) 4~5.5MPa (perp.) Cf. Bending Strength: 14.7MPa(//) 9.8MPa(perp.) RT~900degC Parallel/Perpendicular to Extrusion 2 measurements each, 16 samples

Oxidization (in the Air)

600degC: Helium should be < 30ppm O₂, 650degC: <10ppm O₂ (1~5% loss for 20yrs) Measurements under 1,000 ppm O₂ at 800degC/650degC are going on.

- Heat flow rate at cooling surface with screw-fastening is measured to be >4.5kW/m²K
- Similar measurement in Helium soon.

Graphite Machining Plan

T.Ishida (IPNS, KEK)

Helium Vessel

Vessel is composed of 200mm-thick recycled iron plates from K2K MRD

40channels of water paths (outside) Serially connected to DV plate coils

NBI06, CERN, September 2006

NBI06, CERN, September 2006

Heat and Stress Analysis for the upstream shield plates

T.Ishida (IPNS, KEK)

40GeV, 4MW

1.8mm

160MPa

- Working base design in hand. Production of all graphite blocks started, towards the completion within this FY.
 - Machining will pay good attention to the surface quality.
- R&D works for the graphite core are still continuing.
 (1) how to fasten (2) how to support (3) cooling module design
 - Goal is to make one of real graphite core units within the FY.
- Detailed design works for the helium vessel is also going on towards the completion until next January with a company.
 - We will install water-cooling iron shields in the vessel Design work to be completed also at the same time.

Schedule (FY06)

主要項目 Item	2006 July	August	September	October	November	December		
1. 冷却コア開発 Core Development								
ヘリウム環境冷却試験 Cooling test in Helium	1	Test	条	[,] 結構造決定	Screw faster	ning design $ abla$		
締結試験 Screw design R&D	Tender	Design	Production		Test	Cooling test		
1号機設計·製作 1st unit production				Tender	Design			
解析 FEM	冷却配管・支持構造の決定 Cooling pipe, support structure▽							
仕様 Specifications								
2. ヘリウム容器 Helium Vessel								
設計 designing	Tender	Design						
解析 FEM	真空引・地震構造解析 Earthquake resistant structure ▽							
仕様 Specifications								
						-		

主要項目 Item	2007/Jan	February	March	(April)	Staff	Company
 冷却コア開発 Core Development ヘリウム環境冷却試験 Cooling test in Heliun 締結試験 Screw design R&D 	 1 				MT/TI -	– MHI
1号機設計·製作 1st unit production 解析 FEM	Production	Assemble	Cooling Test		TI/MT CJD/SK	MHI(?) MHI(?)
仕禄 Specifications 2. ヘリウム容器 Helium Vessel 設計 designing	位禄書準備 Sp Design				All HY/TI	– IHI
解析 FEM 仕様 Specifications	仕様書準備 Sp) pecification			HY All	IHI(?) -

- Production (FY07) Installation(FY08)
- Need to finish whole R&D and design within this FY.