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Primary (p+Be) interactions
Proton beam and target

Beam protons produced around a mean position, angle, with
gaussian smearing
central values of position, angle and spread (positional and directional)
based on beam position monitor information

Be target

7 “dugs’ make atotal of 1.7 interaction lengths

Target material, shape (including cooling fins)
Included in ssmulation
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Primary (p+Be) interactions
Beam Optics

Varying spread of beam in target changes the relative efficiency of
an interaction by 1%

relative efficiency i1s how often aproton will or won't interact,
roughly corresponds to how much the flux can change

Considered “pin” beam (no divergence or spread), perfectly
focused beam, and different focus points
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Primary (p+Be) interactions
Proton beam

- Absolute proton on target (p.o.t.) measured by two
toroids upstream of the target

— Two toroids measurements track each other well

— Toroid drift main contributor to error

— 3% total error on delivered p.o.t before March 2003, since then
1.7%

target/horn p from

Booster

toroid 2 toroid 1

beam position
monitors
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Primary (p+Be) interactions
p+Be cross sections

Protons then interact with the target, and elther
scatter or react to produce a meson

O iota = O dagic T O indastic

/ G indasic — O quasi-elastic T O reaction

_— |

p+Be-> p+... p+Be-> w,K+....
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Primary (p+Be) interactions
p+Be cross sections
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Primary (p+Be) interactions
p+Be cross sections

Oiotd — O dagic T O inelagtic

+ 0

O indastic — unasi-elastic reaction

Model dependent quantities:
Oy .qic FANge constrained by 6., and 6 ;g qic = 1%
Variation of 30 mb for 6 g gagic => 2.5%
Kinematic variation in model
More forward going events see more target, material

=> <1% change for G y.gic, 2% fOr G ¢ 5 glasic

Measure O ,o,tion WIth differential cross sections
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Primary (p+Be) interactions
Differential cross sections of «t,K

Various experiments have measured how often protons react to
produce t,K

However, such data sets vary across proton beam energy, meson
angle and momentum, as well as incident targets

=> Fit the differential cross section data sets with a
parameterization function

Use of a parameterization allows for comparisons between data
sets, aswell as combining different data sets into one
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Primary (p+Be) interactions

Sanford-Wang (S-W) Parametrization

MiniBooNE uses Sanford-Wang parametrization for the it,K fits

 Given the proton beam momentum (p,..,,,) @d meson lab frame
momentum (p) and angle (6 ), can fit to data using ¢,-Cq

* Function based on Feynman scaling

d?o(p+A->n*+X o i
dp dQ )(p’e) =GP 2(09_p/ Poeam) EXP[-C3 (P> Poeam %) -CsO9(P-C-Ppeam cos® 0) ]

* C, represents mass threshold for kaons (=1 for pions)

Errors are calculated based on the allowed 1o variations in the
C ; C; correlations are included
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tt external data

e Combined S-W fit to preliminary HARP 8.9 GeV and E910
6.4,12.3 GeV datasets

— HARP s at correct beam energy, E910 provides some of the smallest
angular bins

e E910 and HARP have smilar normalization, some differencein
shape of fits

e Fit pre-HARP is consistent with current fit including HARP
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K* external data
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KO external data

KO data sets; E910 12.3,17.6,
Abe 12 GeV/c

— Other data sets exist (Eisner, 6.0
GeV/c, Blobdl, 12,24 GeV/c) but
p-p not p-Be
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KO external data

.. E910 pBe 17.6 GeV angle bins |
41 E910 pBe 12.3 GeV angle bins
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Magnetic horn

T (= Hornis )
pulsed at

Geometry In
Geant3

(converted to
Geant4)
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Horn current

* Absolute current 37 2003 2008
measurement of 174 kA Go 175KA i
— value measured by current %E - 1. FEL e T
transformers to 0.5% level C b s Biin, y
— => consider variations of i mlr7al
+- 1kA e ot 0 TR T
— Most effect at high energy Davssvee et 23, 002

days

 Horn current pulse timing
— Horn pulse peak arrives when protons do
— Current delivery timing is stable over time
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Horn
Electromagnetic field model

 |naperfect conductor, the magnetic field does not enter the
conductor

« Inredlity, thefield can be nonzero into the surface of the
conductor, thisis called “the skin depth effect”

Perfect! Realistic
o OMerconductor  Outerconductor
B~ 1/r B~ 1/r

Target
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Horn

Electromagnetic field model

e Measurements of

g - B(T)
MiniBooNE horn across F
voltage, radius consistent
w/ Ur

e Measured field on the
Inner surface of conductor
on NuMI horn to be small

* Field penetration (modeled
as an exponential decay) in

~1/r

r (cm)

conductor has
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Magnetic

Decay
focusing horn region
primary p+Be  horn secondary
Interactions current, | interactions
-, K*-, KO magnetic
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Secondary Interactions

17% of all protons interact twice

/% of v, comefromp->p->m7

Additionally, pions and kaons can interact with the horn, target or

concrete

* Changing the secondary production
models has aminimal effect on the
neutrino flux

— GHEISHA, Bertini, Binary

cascade models similar —

 HARP hasthe ability to measure
both proton and meson interactions
on Be

« Thick target datawill check current
model as well
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Magnetic

Decay
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 Mesonsdon’'t aways decay to neutrinos (absorption,
scattering); neutrinos don’'t always hit our detector

* To help boost statistics, we use “redecay”
— Every meson that decays to a neutrino is saved
— It isdecayed ~1000s of times with the same meson momentum,
position and decay mode

» Muon polarization is taken into account
» Neutrino’s position, direction is maintained when it interacts at detector

 More events are produced for sparse kinematic regions, but
with a corresponding lower weight

— Statistics can cause fluctuations which redecay can amplify

» One pion producing aneutrino at 7 GeV, but no neutrinos from pions of
dightly different momentum, angle, now there' s 1000 of them

— Deweight events after redecay to produce a smooth flux
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Beam Monte Carlo Predicted Vu Fluxes
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L ots of work put into understanding
the primary parts of neutrino
production

—Hadron production by HARP extremely
valuable
A neutrino flux only has meaning with
an associated error and scale of that

error
— absolute p.o.t, beam optics, p+Be
Cross sections, Sanford-Wang
parametrization, horn current, skin
depth, secondary interactions and
geometry all considered
—Still working!
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Geometry of beamline

o Distance from target/horn to detector verified by:
— surveyors
— walking
— driving
— Google Maps
 Only *“large” (noticable) shifts would produce a significant effect on the flux
— Shifting the target by 23 cm -> 8% change in flux
— Shifting collimator by 1 m further down -> 1% change in flux
— Increasing decay pipe diameter by 4 inches -> 4% change in flux
— Increasing the length of the horn by 10cm -> 1% change in flux
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