MiniBooNE beam simulation

Kendall Mahn on behalf of those who did all this work

primary p+Behorn,secondaryneutrinointeractionsmagneticinteractionsproduction $\pi^{+/-}$, K^{+/-}, K^0fieldreactionsproductionproductionmodelingreactionsreactions

Primary (p+Be) interactions Proton beam and target

Beam protons produced around a mean position, angle, with gaussian smearing central values of position, angle and spread (positional and directional) based on beam position monitor information

Be target

7 "slugs" make a total of 1.7 interaction lengths Target material, shape (including cooling fins) included in simulation

Primary (p+Be) interactions Beam Optics

- Varying spread of beam in target changes the relative efficiency of an interaction by 1%
 - relative efficiency is how often a proton will or won't interact, roughly corresponds to how much the flux can change
 - Considered "pin" beam (no divergence or spread), perfectly focused beam, and different focus points

Primary (p+Be) interactions Proton beam

• Absolute proton on target (p.o.t.) measured by two toroids upstream of the target

- Two toroids measurements track each other well
- Toroid drift main contributor to error
- 3% total error on delivered p.o.t before March 2003, since then

Primary (p+Be) interactions p+Be cross sections

Protons then interact with the target, and either scatter or react to produce a meson

Primary (p+Be) interactions p+Be cross sections

Primary (p+Be) interactions p+Be cross sections

 $\sigma_{\text{total}} = \sigma_{\text{elastic}} + \sigma_{\text{inelastic}}$

$$\sigma_{\text{inelastic}} = \sigma_{\text{quasi-elastic}} + \sigma_{\text{reaction}}$$

Model dependent quantities:

 $\sigma_{elastic}$ range constrained by σ_{total} and $\sigma_{inelastic} => 1\%$ Variation of 30 mb for $\sigma_{quasi-elastic} => 2.5\%$ Kinematic variation in model

More forward going events see more target, material => <1% change for $\sigma_{elastic}$, 2% for $\sigma_{quasi-elastic}$

 $\begin{array}{ll} \mbox{Measure } \sigma_{reaction} \mbox{ with differential cross sections} \\ \mbox{\tiny NBI 5-9 Sept 2006} \mbox{\tiny K. Mahn} \end{array}$

Primary (p+Be) interactions Differential cross sections of π ,K

Various experiments have measured how often protons react to produce π ,K

However, such data sets vary across proton beam energy, meson angle and momentum, as well as incident targets

- => Fit the differential cross section data sets with a parameterization function
- Use of a parameterization allows for comparisons between data sets, as well as combining different data sets into one

Primary (p+Be) interactions Sanford-Wang (S-W) Parametrization

MiniBooNE uses Sanford-Wang parametrization for the π ,K fits

- Given the proton beam momentum (p_{beam}) and meson lab frame momentum (p) and angle (θ), can fit to data using c₁-c₉
- Function based on Feynman scaling

 $\frac{d^2\sigma(p+A->\pi^++X)}{dp \ d\Omega}(p,\theta) = c_1 p^{c2}(c_9-p/p_{beam}) \exp\left[-c_3 \left(p^{c4}/p_{beam}^{c5}\right) - c_6 \theta(p-c_7p_{beam} \cos^{c8} \theta)\right]$

• c_9 represents mass threshold for kaons (=1 for pions)

Errors are calculated based on the allowed 1σ variations in the c_i ; c_i correlations are included

π^+ external data

- Combined S-W fit to preliminary HARP 8.9 GeV and E910 6.4,12.3 GeV datasets
 - HARP is at correct beam energy, E910 provides some of the smallest angular bins
- E910 and HARP have similar normalization, some difference in shape of fits
- Fit pre-HARP is consistent with current fit including HARP

π^+ external data

HARP (preliminary) 8.9 GeV Combined S-W fit E910 12.3 GeV

K⁺ external data

- Currently use Aleshin, Abbot, Eichten and Vorontsov data
- K+ flux shape fixed by fit, normalization determined by beam data
 - LMC, high E v_{μ}
- HARP will make a measurement of kaon production on Be in the next year

K⁰ external data

- K⁰ data sets: E910 12.3,17.6, Abe 12 GeV/c
 - Other data sets exist (Eisner, 6.0 GeV/c, Blobel, 12,24 GeV/c) but p-p not p-Be

 p_{kaon} (GeV/C)

K⁰ external data

S-W fit -----

E910 12.3, 17.6, Abe

- S-W fit constrains K⁰ to 26% level
- K⁰ normalization and shape are set by this fit
 - $K^0 v_e$ s only compose <10% of c_1 sample

Magnetic horn

Horn is pulsed at 174 kA for 141µs

Geometry in Geant3 (converted to Geant4)

NBI 5-9 Sept 2006

Horn current

- Absolute current measurement of 174 kA
 - value measured by current transformers to 0.5% level
 - => consider variations of
 +/- 1kA
 - Most effect at high energy

- Horn current pulse timing
 - Horn pulse peak arrives when protons do
 - Current delivery timing is stable over time

Horn

Electromagnetic field model

- In a perfect conductor, the magnetic field does not enter the conductor
- In reality, the field can be nonzero into the surface of the conductor, this is called "the skin depth effect"

Perfect!

Realistic

Horn Electromagnetic field model

- Measurements of MiniBooNE horn across voltage, radius consistent w/ 1/r
- Measured field on the inner surface of conductor on NuMI horn to be small
- Field penetration (modeled as an exponential decay) in conductor has no substantial effect on normalization

Secondary Interactions

17% of all protons interact twice

7% of v_{μ} come from p-> p -> π

Additionally, pions and kaons can interact with the horn, target or concrete

- Changing the secondary production models has a minimal effect on the neutrino flux
 - GHEISHA, Bertini, Binary cascade models similar
- HARP has the ability to measure both proton and meson interactions on Be
- Thick target data will check current model as well

primary p+Be interactions $\pi^{+/-}, K^{+/-}, K^{0}$ production

horn current, magnetic field modeling secondary

neutrino interactions production

Meson decay to neutrinos

- Mesons don't always decay to neutrinos (absorption, scattering); neutrinos don't always hit our detector
- To help boost statistics, we use "redecay"
 - Every meson that decays to a neutrino is saved
 - It is decayed ~1000s of times with the same meson momentum, position and decay mode
 - Muon polarization is taken into account
 - Neutrino's position, direction is maintained when it interacts at detector
- More events are produced for sparse kinematic regions, but with a corresponding lower weight
 - Statistics can cause fluctuations which redecay can amplify
 - One pion producing a neutrino at 7 GeV, but no neutrinos from pions of slightly different momentum, angle, now there's 1000 of them
 - Deweight events after redecay to produce a smooth flux

Lots of work put into understanding the primary parts of neutrino production

-Hadron production by HARP extremely valuable

A neutrino flux only has meaning with an associated error and scale of that error

absolute p.o.t, beam optics, p+Be cross sections, Sanford-Wang parametrization, horn current, skin depth, secondary interactions and geometry all considered

-Still working!

Geometry of beamline

- Distance from target/horn to detector verified by:
 - surveyors
 - walking
 - driving
 - Google Maps
- Only "large" (noticable) shifts would produce a significant effect on the flux
 - Shifting the target by 23 cm -> 8% change in flux
 - Shifting collimator by 1 m further down -> 1% change in flux
 - Increasing decay pipe diameter by 4 inches -> 4% change in flux
 - Increasing the length of the horn by 10cm -> 1% change in flux

References

- Toroid calibration/checks: J. Monroe thesis
- Sanford-Wang parameterization: J. R. Sanford and C.L.Wang "Empirical formulas for particle production in p-Be collisions between 10 and 35 BeV/c", Brookhaven National Laboratory, AGS internal report, (1967) (unpublished)
- p+Be cross sections (total)
 - Bellettini et al., Nucl. Phys. 79 (1966) 609-624
- p+Be cross sections (inelastic)
 - V. V. Gachurin et al., ITEP-59-1985
 - B.M. Bobchenko et al., Sov. J. Nucl. Phys. 30, 805 (1979) [Yad. Fiz. 30, 1553 (1979)].
- E910, HARP: publications in progress