

Design and Computational Fluid Dynamic analysis of the T2K Target

Neutrino Beams and Instrumentation 6th September 2006

Contents

- Aims of Design
- Current Design Geometry
- CFD and Heat Transfer analysis
- Summary
- Future work

Aims of Design

- Graphite target to be completely encased in titanium to prevent oxidation
- Helium should cool both upstream and downstream titanium window before target due to material limits
- Pressure drop in the system should be kept to a minimum due to high flow rate required (less than 0.7bar)
- Target to be uniformly cooled (but kept above 400°C to reduce radiation damage)
- It should be possible to remotely change the target in the first horn

Target in the 1st Horn

Current geometry

Section of target

Cross Section of Downstream end

Animation of flow

Target Analysis Outline

Boundary conditions (Helium – Ideal gas model) Inlet Mass flow rate = 0.032kg/s (Max compressor flow rate) Inlet helium temperature = 300K Outlet Pressure = 0.9 bar (gauge)

Heat deposited

- On target as cloud of point (x,y,z,heat)
- On Graphite upstream structure as total source
- On upstream and downstream window as radial function (NOTE - Downstream heat scaled from 50GeV and needs verifying)

Materials

Engineering Analysis Group

Area average pressure drop (inlet to outlet) = 0.65 bar

Velocity Streamlines

Mike Fitton Engineering Analysis Group

CFX

Velocity profile at upstream window

Velocity profile at downstream window

CFX

Steady state temperature through centre of target

Upstream Temperature distribution (steady state)

Overall Temperature distribution (steady state)

Window temperatures (steady state)

Summary

- Temperature rise of helium at 0.032kg/s = 141° (23.4kW heat load)
- Pressure drop from inlet to outlet = 0.65 bar (specification was 0.7 bar)
- Analysis shows the upstream window is sufficiently cooled
- Downstream window needs fine tuning to reduce temperature
- Temperature distribution is reasonably symmetric
- Single forward facing inlet and outlet pipes will simplify remote handling

Future work

- Model to be repeated for 13mm radius target
- Next design needs to focus on ease of manufacture
- Heat load on target and tubes needs more work (e.g. apply heat as a function of radius and z