R&D of the T2K target

T. Nakadaira (KEK)

Contents

Introduction

Lifetime estimation of Target Graphite

- Oxidization of Graphite
 - \rightarrow Conceptual design changed
- Prototype test of cooling pipe
 - Workability of thin Ti-alloy tube
 - Brazing between the graphite and Ti-alloy
 - Insulation by plasma-splayed ceramic
- He gas cooling
 - Flow scheme and Circulation system
 - Erosion of graphite by Helium gas

Summary

Quick review: Target conceptual design

Core: Isotropic-Graphite : IG-430 (Toyo Tanso Co. Ltd)

- 26mmø, L=900mm
 - (← Target diameter is changed while the beam size is not changed.)
- Total energy deposit: 41kJ/spill for 30GeV (3.3×10¹⁴ protons / spill) → 19.6kW for 0.75MW beam (2.1sec cycle)
- $\Delta T_{max} \approx 200 \text{K}$. $\sigma_{eq} = 7.42 \text{ [MPa]}$ $\leftrightarrow \text{Tensile strength (IG-430)} = 37.2 \text{ [MPa]}$

Helium cooling

Co-axial 2 layer cooling pipe: Graphite / Ti-6AI-4V

Oxidization of the target graphite

The degradation of the tensile strength

Magnitude of the oxidization is measured by mass reduction.

= strength/stress
3.5
3.0
2.0
(crumble)

Speed of Oxidization

- He+O₂ 1000ppm 800°C 50hour
 - IG-430,IG-430U (High purity grade) ... 4.0 ×10⁻⁵ mass%/hour/ppm

mass reduction
due to oxidization (mass%)

Target lifetime due to Oxidization

- Target center may become 700~800°C, but surface will be ~400°C.
- O2 contamination should be kept as much as lower.

Modified conceptual design

Ti-alloy container is needed to keep helium gas purity.
 Change the downstream window material: Graphite → Ti-6AI-4V
 Upstream of the target should be covered by another beam window.
 Ti-window is chilled by helium gas for target cooling.

Detailed design

• Optimized for the He-gas flow and the cooling of the beam windows. (\rightarrow M. Fitton's Talk)

Ti-Apply parts are assembled with welding.

Ti-Alloy tube is coated with plasma-splayed ceramics.

Blazing between the graphite parts and Ti-Alloy parts

Assembled using the graphite-graphite bonding.

Target Segmented?

 Dynamic stress due to thermal shock by well aligned p-beam is estimated by FEM.

 \rightarrow There is no advantage of segmentation.

- - Max. displacement ... 4mm
 - Max. von Mises stress … 4MPa

Segment length	Max. Von Mises Stress (MPa)		
(mm)	Ansys	LS-Dyna	
∞	7		
900	7	8	
15	10	10	
3	8	7	

Ti-Alloy Outer-tube

Micro Plasma Welding

Plasma-splaying ceramics

Graphite-Ti brazing @ high temp.

 Target will be supported by Ti-Alloy parts at the upstream end by brazing.

Brazing material: BAg-8 (JIS Z3261)+2%Ti or BPd-4(JIS Z3762)

- Expected average temperature of target is $\sim 600^{\circ}$ C \rightarrow Is the brazing part strong enough at high temp.?
- Tensile strength @ 600°C is measured.
 - \rightarrow 26 MPa ~ 30 MPa (preliminary)

Parameter for the upstream part design is obtained. c.f. Tensile strength of graphite (IG-43) is 37.2 MPa.

Plasma-splayed Ceramic layer

Purpose: Insulation between the target and 1st horn inner conductor.

- Expected voltage difference: ~900V.
- ■The temperature in actual experimental condition is higher than this test. (70~80°C) : It become more severe. →Desired withstanding voltage: ~2kV
- Plasma splayed ceramic has a porous structure. \rightarrow It is necessary to seal pores by surface coating.
- We have tested 3 sealing materials.
 - 1 Al2O3-based and 2 SiO2-TiO2 based.
 - Insulation test (DC-voltage)
 - Measurement of the discharge voltage of the ceramic-layer + 1mm gap filled with helium gas.
 - The robustness at High temperature is checked.
 - 600°C 2hour

Plasma-splayed Alumina ceramic

Sealing material	Robustness	Insulation test	
	@ High temp.	Temp.	Discharge volt.
w/o sealing	O.K @ 600°C	27°C	1.4 kV
Al ₂ O ₃ -based	\$ @ 400 °C	26°C	0.75 kV
SiO_2 -Ti O_2 based (1)	O.K @ 600°C	26°C	3.1 kV
SiO_2 -Ti O_2 based (2)	O.K @ 600°C	25°C	3.1 kV

•Sealing with SiO_2 -Ti O_2 based material is in good shape.

•We plan to check the robustness after the exposure to a proton beam.

Ceramic w/ Al_2O_3 based sealing falls off the Ti-Alloy tube (400°C 1hour), while test piece without sealing is not damaged (600 ° C 2hour).

He system for target cooling

Total load for 30GeV including the cooling pipes is 23.6kW

- ■Requirement for the refrigerant helium flow-rate : 26.7 [g/s] assuming the allowable gas temperature rise of 170K (30 °C → 200 °C)
- \rightarrow Specification for the Helium system for the target including 20% margin.
 - Heat load assumption: 28.3kW

Flow rate : 32[g/sec] = 660 [Nm³/h] @ 0°C,1atm)

720 [m³/h] = 12000[l/min] @ 30°C,1atm

Helium gas system

Standalone test of the helium compressor

- Achieved flow rate = 720 [Nm³/h]
- Power consumption: 34kW
- ■Helium gas leak rate < 1.1×10⁻⁵[Pa·m/s]
- Test operation of the helium system is started at KEK.

Basic operation of the system is tested.

- Automatically stopped in abnormal conditions.
- Flow rate control by the valve at the bypass line.

1st heat exchanger

Measurement of erosion

- Measure the weight of the graphite test piece before and after exposing to the helium gas flow @ RT.
 - Helium flow direction is parallel to the graphite surface.

Test result ... Effect is small!

Flow rate:1.6[g/s],Temp: 7.6°C

Mass reduction rate / (surface/volume) < 4.1 [mass %/year/m]
→ Expected mass reduction for target < 0.15 [mass %/year], by assuming the erosion effect ∝ (mass flow/cross section)²

Summary

Target design

■Diameter 30mm → 26mm

Graphite parts should be covered by Ti-Alloy to reduce the oxidization.

Target prototype

Prototypes of Ti-Alloy tube and the downstream beam window are made successfully.

Graphite–Ti-alloy brazing is strong enough @ 600°C.

Plasma-splayed Alumina ceramic coated with SiO₂-TiO₂ based sealing material is the candidate for the insulator between the target and 1st horn.

Helium circulation system

Helium compressor system is built.

1st heat exchanger is designed.

Erosion effect by high speed helium gas is expected to be small.

Plan

JFY 2006

- Prototype with the almost final design
- Full scale test of He-gas cooling (~20kW)
- JFY2007
 - Production of actual equipment \rightarrow Install in 2008 autumn.

Backup

Plasma-splayed ceramics

Samples for measurement of the withstanding voltage @ KEK

Surface coating for the sealing

Plasma-splayed ceramics Samples for measurement of heat resistance @ company.

Helium compressor

Standalone operation test of the helium compressor

Suction = 0.01MPa, Discharge pressure=0.16MPa

 \rightarrow Achieved flow rate = 720 [Nm³/h]

c.f. Flow rate in spec. is 660[Nm³/h].

Power consumption: 34kW

■Helium gas leak rate < 1.1×10⁻⁵[Pa·m/s]

Insulation test of plasma-splayed ceramic

Sealing material	Robustness		Insu	ulation test
	@ High temp.	Atm.	Temp.	Discharge volt.
w/o sealing	O.K	Air	27°C	5.2 kV
	@ 600°C	He	27°C	1.4 kV
Al ₂ O ₃ -based	₽×	Air	26°C	4.7 kV
	@ 400 °C	He	26°C	0.75 kV
SiO2-TiO2	O.K	Air	25°C	> 6.2 kV
based	@ 600°C	He	26°C	3.1 kV
SiO2-TiO2 based	O.K	Air	25°C	> 6.2 kV
	@ 600°C	He	25°C	3.1 kV

Outer Tube prototype

- •Ti-6AI-4V (t=0.3mm)
- + Plasma-splayed alumina (Al_2O_3) (t=0.5mm) for the insulation between the target and 1st horn.
- Coating for sealing the pores of alumina on outer surface to increase the withstanding voltage.

Ti-Alloy Outer-tube

Target & Ti-Alloy pipe

R _{target}	15 [mm]	13 [mm]					
ΔR (target ~ horn)	1[mm]	3[mm]	\odot				
Energy deposit (30GeV, $\sigma_x = \sigma_y = 4.24$ mm)							
Target	44.0 [kJ/spill]	39.3 [kJ/spill]	(;)				
Inner Pipe	3.5 [kJ/spill]	3.5 [kJ/spill]					
Outer Pipe	1.1 [kJ/spill]	1.1 [kJ/spill]					
Insulator	1.6 [kJ/spill]	1.5 [kJ/spill]					
Targeting Efficiency	99.80%	99.09%					
For Gaussian beam	(0.19%loss)	(0.91%loss)	\bigcirc				
Helium flow (T _{gas} < 200°C, suction=0.03MPa)							
Cross section	512.4 [mm ²]	459.3 [mm ²]	X⊲				
Flow rate	543 [Nm³/h]	491 [Nm³/h]	\odot				
Avg. speed @ target	237 [m/s]	246 [m/s]	$\overline{\mathfrak{S}}$				
ΔP @straight part+1 st hex	0.0884 [MPa]	0.0833 [MPa]	\odot				

Target dimension

Clearance between the outer tube and 1st horn

- Previous design: $\Delta r = 1$ mm
 - \rightarrow It is difficult to change the target remotely.
- Reduce the target size by 2mm, if the decrease of targeting efficiency by 0.7% is tolerable.

Neutrino Flux: ϕ =30mm vs.. ϕ =26mm

Insulation test of plasma-splayed ceramic

Surface of ceramic layer (SEM)

w/o sealing SEM(×50)

w/o sealing SEM(×500)

Sealing w/ Al_2O_3 -based mat.($\times 50$)

Sealing w/ Al_2O_3 -based mat. (×500)

Sealing w/ SiO₂-TiO₂ -based mat. (1)

Pictures by SEM.

 Transparent layer with thickness of ~50µm is observed by an optical microscope.

Sealing w/ SiO₂-TiO₂ -based mat. (2)

No clack is observed.

