Antineutrino Running at MiniBooNE

Morgan Wascko Imperial College London

Motivation

- \overline{v} running is a subject of much interest
- CP violation in v sector
- Difference in oscillation probabilities for v, \overline{v}
- Major experimental obstacles:
 - \overline{v} cross sections not well known
 - wrong sign
 backgrounds
 v in a v beam

Asymmetry of \overline{v} , v oscillation probabilities in MiniBooNE versus v oscillation prob.

Outline

- MiniBooNE antineutrino running
 - First Data!
 - Wrong Sign Backgrounds
- Physics Goals for first year
 - Cross section physics
 - Oscillations
- The future of the BNB: SciBooNE

Images of the MiniBooNE horn

Extract 8 GeV protons from Fermilab Booster I.7 λ beryllium target (HARP results soon!)

Reversible magnetic horn Focusses mesons of specific charge Allows antineutrino running!

50 m decay region >99% muon neutrinos both v and \overline{v} 490 m dirt 800 ton CH₂ detector 1520 PMTs 1280 in main tank 240 in veto region

Imperial College

Switched horn polarity in Jan, 2006 About 0.8e20 POT so far!

M.O. Wascko

MiniBooNE v Running

Note also: a horn world record!

Imperial College London

Horn Polarity Change

- Ran special reduced current runs for several weeks before polarity change
- Power supply polarity switch began Jan 9
- Expected to take two weeks
 - \overline{v} run started Jan 19!
- "Changeover went flawlessly" - R.Van de Water

Booster Performance

-	Linux GxPC 1 Booster Charge History								
Prot/hour : event 1D at 34->34ms. Prot/event: event 1D at 34->34ms.									
1.0E+17									
5.5E+12									
9.0E+16						49000 8000	ಷತ್ ನ್ ಕೃತ	1 (c. 1994) - 19	
5.0E+12					- and	1	:	27 3	i i
0.05.14	er soonloore,	anna mar Anach	an a	and a strike	2 Carlon and a	÷			
4.4E+12								ad Sector and the	
			1.1	2 - A - A - A - A - A - A - A - A - A -			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
7.0E+16	en anter a sur a sur Transmission de la sur a sur	and setting in the	<u>a an an</u>	alate and	:		:		1
3.02412	1.1		•	:	1 4 A				
6.0E+16		. <u> </u>	1999 - 1999 -		10 A		1 - E	:	
3.3E+12							:	:	
5.0E+16	· · · · ·				:				
2.8E+12		1. J. J. J. J.			:				
4.0E+16	· · · · ·	2							
2.2E+12		1							Ī
3.0E+16		· .							
1.7E+12					· · · ·				ĺ
2 05+14									
1.1E+12									i i
1.0E+16									
0	00.00		02.50		07.50		11.50		15.50
0	00:00 08/23/06		03:59 08/23/06		07:59 08/23/06		08/23/06		08/23/06

A new record!

Beam Performance

- A 35 year old machine has been pushed to run 20 times more output while keeping the losses at the same level
 - Amazing!
- But it's more than just one good week
- Great performance throughout the run has allowed MiniBooNE to amass the world's largest v data set at these energies

Neutrino Count since Jan 18/06

Outline

- MiniBooNE antineutrino running
 - First Data!
 - Wrong Sign Backgrounds
- Physics Goals for first year
 - Cross section physics
 - Oscillations
- The future of the BNB: SciBooNE

Images of the MiniBooNE horn

Wrong Sign BGs

- In neutrino running, wrong sign backgrounds are very small (2%)
- In antineutrino running they are much larger (~30%)
- Cherenkov calorimeters cannot distinguish μ⁻ from μ⁺
- Need a way to extract the WS BGs!

Wrong Sign BGs

- In neutrino running, wrong sign backgrounds are very small (2%)
- In antineutrino running they are much larger (~30%)
- Cherenkov calorimeters cannot distinguish μ⁻ from μ⁺ (event by event)
- Need a way to extract the WS BGs!

Constraining WS BGs

- MiniBooNE has developed three methods of constraining the overall fraction of v, \overline{v}
 - μ direction
 - μ lifetime
 - $CC\pi^+$ event selection
- Independent constraints
- Sensitive to total WS fraction
 - Not sensitive to energy spectrum of WS events

WS BG Constraints: µ Directions

- Softer Q² spectrum for antineutrino events means more forward-peaked μ
- Reconstruction has little effect on this constraint
- WS fraction can be measured to 7% with reconstructed angles
- Can also use Q² distributions
 - Similar precision
 - Stronger constraint?
 - Poorer resolution
 - Larger uncertainties

WS BG Constraints: CCTT+ Selection

- Use CCπ+ event selection:
- Tag $v_{\mu} N \rightarrow \mu^{-} \pi^{+} N$ events with two Michel electrons
- π- captured by carbon, do not decay
 - Cannot tag $\overline{\nu}_{\mu} N \rightarrow \mu^{+} \pi^{-} N$ events: only I Michel
- Two Michel sample is 85% pure WS
- Constrain WS fraction with 15% uncertainty

Neutrino type	# before cuts	# after cuts	
ν _μ (WS)	30,539	2,525	
$\overline{\nu}_{\mu}$ (RS)	71,547	461	
Total	102,086	2,986	

WS BG Constraints: **µ Lifetime**

- Use muon decay rate in mineral oil to constrain WS BGs
- 8% µ- capture probability on carbon
 - $\tau_{\mu-}=2.026\mu s, \tau_{\mu+}=2.197\mu s$
- Can extract WS contribution with 30% uncertainty
- Independent of kinematics and reconstruction

from $CCI\pi^+$ data sample

WS BG Constraints: Summary

Measurement	WS uncertainty	resultant $\overline{\nu}_{\mu} \sigma$ error
cosϑµ	7%	2%
CCIπ ⁺	15%	5%
μ Lifetimes	30%	9%

Note: not much sensitivity to WS energy spectrum!

Outline

- MiniBooNE antineutrino running
 - First Data!
 - Wrong Sign Backgrounds
- Physics Goals for first year
 - Cross section physics
 - Oscillations
- The future of the BNB: SciBooNE

Images of the MiniBooNE horn

Status of \overline{V}_{μ} σs

- Very few data, especially at low energy
- Not much understanding of nuclear targets
- $\overline{\nu}_{\mu}$ CCQE
 - ~1700 events
- $\overline{\mathbf{v}}_{\mu} \mathbf{N} \mathbf{C} \pi^{\mathbf{0}}$
 - Only one (1) measurement ever.

 Look at past measurements, then MiniBooNE data and expectations Imperial College London

\overline{v}_{μ} CC QE Scattering

<e></e>	Experiment	target	date	#QE evts	
2 GeV	Gargamelle	C ₃ H ₈ CF ₃ Br	1979	766	
I.3 GeV	BNL	H ₂	1980	13	
I6 GeV	FNAL	NeH ₂	1984	405	
6-7 GeV	SKAT	CF ₃ Br	1988	92	
9 GeV	SKAT	CF ₃ Br	1990	159	
5-7 GeV	SKAT	CF ₃ Br	1992	256	
				691	

Imperial College London

$\overline{\nu}_{\mu}$ NC π^{0}

- Only one measurement of $\overline{v}_{\mu}N \rightarrow \overline{v}_{\mu}N\pi^{0}N$ to date¹
 - 25% uncertainty at 2 GeV
 Important for v_e

appearance searches

• Coherent production more apparent in antineutrino scattering

¹This appeared as a footnote in Faissner et al., Phys. Lett. 125B, 230 (1983) NBI 2006 NBI 2006 NBI 2006 September, 2008

NBI 2006

Imperial College

ν_μ CC QE: MiniBooNE

- MiniBooNE has collected 0.8E20 POT to date in $\overline{\nu}$ mode
 - >15,000 events!
- Preliminary look at data with early subset of 5000 events

 cf. 1700!
 The read d'a Costan
- The world's first v_{μ} events below I GeV!

Quasi-Elastic Energy Distribution for Muon Anti-Neutrinos

$\overline{\nu}_{\mu}$ NC π^{0}

- Expect >5000 $\overline{\nu}_{\mu}$ NC π^{0} events within fiducial volume for 2E20 POT
- MiniBooNE's event selection requires:
 - Tank (>200) & veto (<6) PMT hit cuts
 - Two-ring reconstruction
 - $m_{\pi^0} > 50 \text{ MeV/c}^2$
- Application of event selection should yield
 - 1650 resonant events
 - I 640 coherent events (Rein & Sehgal)
 - ~I000 WS events

cf. $v_{\mu} NC \pi^{0}$

- Recent improvements in $\pi 0$ reconstruction algorithm allow better extraction of coherent fraction in neutrino data
 - ~|8%

Imperial College

London

Coherent NC π⁰

Coherent production in v mode should be obvious!

• Given the K2K coherent CCI π search, MiniBooNE's \overline{v} NC π^0 search should be very interesting!

Imperial College

London

M.O. Wascko

Outline

- MiniBooNE antineutrino running
 - First Data!
 - Wrong Sign Backgrounds
- Physics Goals for first year
 - Cross section physics
 - Oscillations
- The future of the BNB: SciBooNE

Images of the MiniBooNE horn

\bar{v}_{μ} Disappearance

- Oscillation appearance searches are sensitive to CPV, but not CPTV
 - Need disappearance search as well to distinguish between CPV and CPTV
- MiniBooNE can perform both searches
- Shown: CPT violating case
 - v_{μ} do not oscillate, but \overline{v}_{μ} do oscillate
- Note: no published limits on CPTV v_{μ} disappearance

Imperial College London

v_e Appearance

- Recall, LSND oscillations were seen in antineutrinos
 - $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$
 - True confirmation can only be made with antineutrino running!
- Shown: appearance sensitivity region for antineutrino oscillations in the case of no oscillations in neutrinos
 - Compare to LSND-KARMEN joint analysis allowed region
- Statistics limited!

Outline

- MiniBooNE antineutrino running
 - First Data!
 - Wrong Sign Backgrounds
- Physics Goals for first year
 - Cross section physics
 - Oscillations
- The future of the BNB: SciBooNE

Images of the MiniBooNE horn

The Future: SciBooNE

<u>Spokespeople</u>: T. Nakaya, Kyoto University M.O.Wascko, Imperial College Imperial College London

\bar{v}_{μ} WS Constraints

- MiniBooNE: ~15% uncertainty on WS BG in 4 bins (0-1.5 GeV)
- SciBooNE: ~7.5% stat. err. in 2 track sample in 4 bins (0-1.5 GeV)

Conclusions

- MiniBooNE began running in antineutrino mode in January 2006
 - Already the world's largest data set at these energies!
 - Opening up the antineutrino cross section landscape with first $\overline{\nu}$ data
- We have developed several novel techniques to constrain the overall level of WS BGs
- New v cross section measurements coming
- SciBooNE will bring enhanced \overline{v} cross section capabilities to the BNB in 2007
- Sensitivity to antineutrino oscillations will require more data!

Backups

WS BG Constraints: µ Direction

- Softer Q² spectrum for antineutrino events means more forwardpeaked µ
- Can fit angular distribution shape and extract RS/WS fractions
- Using generated muon directions, can extract WS fraction with 5% uncertainty

WS BG Constraints: µ Direction

M.O.Wascko

- MiniBooNE has very good angular reconstruction
- Tested with cosmic muon calibration system
- Fit distribution of

 $\cos^{-1}(\vec{u}_{MuTr}\cdot\vec{u}_{Fit})$ $xe^{-x^2/2\sigma^2}$

- (projection of a 2D Gaussian)
- Extract intrinsic resolution of muon tracker
 - Angular resolution = 4.0°

Imperial College London

CC QE Scattering

- Few v_u QE measurements
- None below I GeV
- MiniBooNE expects ~40,000 events before cuts for **2E20 POT**

CC ν_{μ} bar Quasi-Elastic Cross Section

- (10⁻³⁸ cm²) Serpukov, Belikov, Z. Phys. A320, 625 (1985), Al ▲ SKAT, Brunner, Z. Phys. C45, 551 (1990), CF₃Br ▼ GGM, Armenise, Nucl. Phys. B152, 365 (1979), C₃H₈CF₃Br в 6 1.5 NUANCE (nucleon bound in ¹²C) 1.25 1 0.75 0.5 0.25 0 10² 10 10 E_{ν} (GeV)
 - 0.75 0.5 0.25 10² E_v (GeV) 10

ss Section

(1980), H₂

ucleon) M₄ = 1.0 GeV

G.P. Zeller

Imperial College London

CC QE Scattering

2 87-01.75 0 1.5

1.25 1

0.75

0.5

0.25

- Few V_U QE \bullet measurements
- None below I GeV
- MiniBooNE expects ~40,000 events before cuts for **2E20 POT**

CCTT⁻ Events

<e></e>	Experiment	target	date	#CCπ ⁻ evts	
I.5 GeV	Gargamelle	C ₃ H ₈ CF ₃ Br	1979	282	
5-70 GeV	FNAL	H ₂	1980	247	
5-200 GeV	BEBC	D ₂	1983	300	
25 GeV	BEBC	H ₂	1986	375	
7 GeV	SKAT	CF ₃ Br	1989	120	
				1324	

\overline{v}_{μ} CC QE Scattering

- Expect ~32,000 $\overline{\nu}_{\mu}$ CC QE interactions within fiducial volume for 2E20 POT
- MiniBooNE's current CC QE event selection:
 - Tank (>100) & veto (<6) PMT hit cuts
 - Fisher discriminant cut on event topology parameters
 - Select single, μ-like ring
- Using CC QE event selection, expect ~19,000 events
 - 75% pure QE (30% of those are WS)
 - May be improved with further refinements for $\overline{\nu}_{\mu}$
- Using WS constraints, expect to measure $\overline{\nu}_{\mu}$ CC QE cross section with ~20% uncertainty