T2K controls/DAQ ~ beam control+DAQ system ~

Ken Sakashita for T2K collaboration

- 1. Introduction
- 2. Components
- 3. Read-out/software
- 4. Summary & Future plan

T2K beam line

Beam control+DAQ system

- 1. control primary proton beam
- 2. monitor primary/secondary beam
- 3. monitor beam-line equipments
- requirement of beam position at the target < 1 mm shift
- ✓ precisely direct neutrino beam to SK < 1 mrad
- ✓ protect beam-line equipment from destroying

Spill synchronized monitoring

Spill asynchronized monitoring

- components
 - Each component is connected through GbE

Read-out electronics

- record pulse shape w/ FADC in order to monitor
 beam every bunch
 CPU(IA32 800MHz) + memory
 Linux is running
- Newly developed common readout platform
 - 65 MHz FADC as one of Front-end card
 - calculate beam center
 and width w/ CPU

KEK online group

Data acquisition system

- Network distributed DAQ
 - total ~50 front-end nodes, ~1200 ch read-out
 - under developing
- online analysis of beam center/width etc..

online calculation of beam center/profile

KEK online group

Slow monitor/control

- EPICS (common software framework)
 - environment monitoring
 (Temp., Vacuum etc..)
 - communication w/ accelerator group
- Magnet control
 - control w/ MySQL DB
 - monitor w/ EPICS

Summary & Plans

- R&D and designing of each component are now in progress
- develop several software tools / database
 - Beam tuning tools
 - Spill database (beam loss, position, intensity etc..)
- start bench-testing from the end of this year at KEK
- construction of system will be started from 2008