T2K muon monitors K. Matsuoka (Kyoto Univ.) for T2K muon monitor group

Contents

- Introduction
- Beam test results
- Summary

NBI2006 - 6th International workshop on Neutrino Beams and Instrumentation

T2K muon monitor (MUMON)

- Monitor the secondary beam directions by measuring muon profiles on a bunch by bunch basis
- Cover 160 x 160 cm² area
- Direct ν beam in 1 mrad, corr. to 11 cm at MUMON \rightarrow Requirement for precision of profile center: 3 cm
- Sensitive to the p targeting pos. and the horn magnet status
- Readout by FADC (65 MHz, 12 bit, ±1 V)

MUMON detectors

- Two independent systems for redundancy
 - Array of semiconductor detectors
 - Array of ionization chambers
- Semiconductor detectors
 - Silicon PIN photodiodes
 - O Good response
 - A Radiation damage
 - ~1 x 10⁸ muons/cm²/spill
 - ~10⁷ neutrons/cm²/spill
 - CVD diamond detectors
 - **O** Tolerant of radiation
 - ▲ Unknown basic performance
 - ▲ Cost

Is diamond an alternative to silicon?

Array of semiconductor detectors

MUMON detectors (cont'd)

Parallel plate ionization chambers (IC)

- He gas (cover 10-100 % of T2K full intensity)
- Ar gas in commissioning (cover 1-10 % of T2K full intensity)
- Plate gap size?
- Number of channels?

Beam test w/ electron LINAC

- Measured items
 - CVD diamond detectors
 - Bias voltage scan
 - Linearity
 - Warm-up time
 - Stability
 - Ionization chambers (two 3mm-gap and a 10 mm-gap both in He and Ar)
 - Bias voltage scan
 - Linearity

At the intensities in the expected T2K beam (Max. 1.6 x $10^7 \mu$ /cm²/bunch)

Electron LINAC @ Inst. for Chem. Res. Kyoto Univ.

- 100 MeV electron
- Intensity: 10⁶ ~ 10⁹ e/pulse
- Radius (σ): ~1 cm
- Pulse width: ~50 nsec
- Repetition: ~15 Hz

Setup for diamond test

CVD diamond detector

- Developed by CERN RD42
- Active area:
 9.5 x 9.5 mm²
- Thickness: 500 μm

- **Silicon PIN photodiode**
 - HAMAMATSU S3590-08
 Active area: 10 x 10 mm²
 Thickness: 300 μ m

 Profile monitor (Array of Sis)

Bias voltage scan

Warm-up time

Two types of the responses

- Warm-up time in the first irradiation
 - dia1,2 (left fig.): ~5 sec, dia3,4 (right fig.): ~3 min
- After 5 min interval of irradiation
 - dia1,2 : ~5 sec, dia3,4: ~20 sec
- \rightarrow Need to check at 3.5 sec intervals (T2K spill intervals)

Stability

1 hour continuous operation

Signal responses of four diamonds are all stable within ± 2 % variation after warm-up time of 3 min.

Setup for IC test

Ionization chamber prototype 100 mm Electrodes on G10 plates 50 cm • 75 x 75 mm² for signal Design of NuMI type • 100 x 100 mm² for bias The gas vol. tube contains 3 chambers Ceramic spacer b/w plates (two 3mm-gap and a 10mm-gap chambers) (accuracy of 100 μ m) CT_0 CT₁ CT_2 IC 3mm 3mm 10mm Beam pipe Profile monitor (Array of Sis) ADC 3ch Oscilloscope ADC ADC Attenuator Almost all electrons go through the → ADC 9ch chamber plates.

Bias voltage scan (He gas)

- Scan from 0 to 400 (1200) V and in reverse order
 - Reproducibility: less than 2 % variation

3mm-gap chamber has a good linearity at 10~100 % of T2K full intensity.

Bias voltage scan (Ar gas)

- At the intensities in the T2K commissioning beam (~1 % of the T2K full intensity beam)
- Scan from 0 to 400 (1200) V and in reverse order
 - Reproducibility: less than 1 % variation
- Earlier depletion than in the case of He gas

3mm-gap chamber has a good linearity at 1~7 % of T2K full intensity.

Summary

- CVD diamond detectors
 - Linearity and stability are as good as those of silicon
 - Need further studies
 - Warm-up time at the T2K spill intervals, etc.
- Ionization chamber
 - Both in He and Ar, 3mm-gap chamber is better than 10mm-gap
 - Good reproducibility (< 2 %)
 - Linear response in 1~7 % (Ar) and 10~100 % (He) of T2K full intensity
 - Diff. b/ two chambers is small (1 % in He, 3 % in Ar)
 - → Use 3mm-gap chamber

Fix the number of channels at 49 (7 x 7)

- Next step
 - Produce real chambers w/ ceramic plates and test them
- MUMON installation starts in Dec. 2008

Linearity of diamonds at low intensities

Linearity of diamonds at middle intensities

Linearity of diamonds at high intensities

Warm-up time of diamonds

Stability of diamonds

