T2K beam profile monitor

2006/09/05

Univ. of Tokyo

H.Kakuno

Neutrino Beams & Instrumentation 2006

Outline

- 1. Introduction
- 2. Beam test for the performance evaluation
- 3. Test of the movable structure
- 4. Irradiation test
- 5. Status of the readout electronics
- 6 Schedule
- 7. Summary

Primary beam line monitors

This talk is for the profile monitor SSEM

Beam profile monitor: SSEM

SSEM: Segmented Secondary Emission Monitor

- Measure x and y projection of the beam profile

SSEM in the monitoring scheme

SSEM R&D items

SSEM required resolution: <0.5mm(center position) <0.35mm(beam size)

-> beam test

Stepping motor radiation dose @prep: ~1MGy/10years -> irradiation test

Movable structure <u>temperature@ARC</u>: ~90K -> cryogenic test

SSEM performance evaluation by a beam test

	Test beam line (Booster@KEK)	T2K beam line
# of bunches / spill	1	8
# of protons / bunch	2x10 ¹²	$3.7x10^{11}$ (1/100 intensity) $3.7x10^{13}$ (full intensity)
Beam size	3.8mm	~31mm (maximum)

Beam test

Beam position resolution

Beam size resolution

Gain stability

Long term stability of the secondary emission efficiency

Integrated number of protons (x10¹⁹ protons)

- Degradation of the secondary emission efficiency is observed

- We plan to have calibration mechanism:

move SSEM position using a stepping motor

Test of the mechanical structurecryogenic testlong term operation test

Cryogenic test for SSEM movable structure

Cryogenic test

Both the linear guide and the limit switches work

Maximum torque for the axis of the movable guide: 0.5Nm

at room temp.: 0.2Nm -> Sufficiently low torque c.f.) maximum torque of the stepping motor: 3Nm

Basic functionality have been checked.
 -> make a new movable structure toward the final design

Long term structure test

Long term stability test of the movable structure

Position is drifted by ~100 µm after ~1000 cycles test for further cycles is going on

Irradiation test

-Use Co⁶⁰ source for the irradiation test -test a stepping motor and other monitor related parts

Check of irradiated parts

Stepping motor works at above 1MGy (~10 year operation @T2K line) SSEM and ESM signal cables (polyimide flex. and polyimide coax.) are also OK

Status of the readout electronics

Use 65MHz FADC w/ shaper ← Copper based system developed at KEK - Sample waveform so that we can extract bunch-by-bunch beam profile

Performance is checked at the beam test -optimized the shaping time (50ns)

- -Copper boards are already ordered by Korean group
 -Mass production of the FADC modules and its quality check will be also done by Korean group
- -> Korean group is now preparing for the mass production of FADCs

Schedule

Summary

- SSEM performance evaluation
 SSEM satisfy the requirement for the beam tuning: resolution for the beam center position < 0.19mm resolution for the beam size < 0.27mm
- Status of SSEM structure
 First round of the Cryogenic test is done
 -> modify for the final design
- Electronics (FADC) Preparing for the mass production

 schedule is tight but we need to keep up with it: This year: Finalize all the design Next year: Mass production + Installation (structures for Prep./ARC) JFY2008: Installation

Gain calibration procedure

- 1. collect many pulse and average at beam center
- 2. move SSEM that corresponds to the strip pitch
- 3. collect many pulse and average at that position
- 4. For the strips that is parallel to the SSEM move, estimate the gain degradation from the above result

```
Gain of a certain strip: Gi
average intensity at that position: li
output signal Si = Gili
-> move SSEM that corresponds to the strip pitch
output signal at that position: S'(i-1)=G(i-1)li
gain of the strip:
Gi = Si/S'(i-1) * G(i-1)
= Si/S'(i-1) * ... * S2/S'1 * G1
All the gain is written using one unknown gain G1
```


SSEM is required to have the uniform strip pitch

Degradation of the SSEM resolution in multi bunch environment

• Deviation of pulse height for each shaping time

Structure test w/ motor

Test movable structure using stepping motor.

- 25 cycles full stroke between the limit switches

Stability of the position is OK (5-10 μ m error) for 25 cycles Stability of the number of steps is not stable (~0.1% deviation)

120m long cable did not work after 5 cycles

SSEM Electronics

Test FADC65 module using the real proton beam at KEK

- Cables:

capton flex circuit + ETFE twist-pair cable

- VME variable attenuator
- Readout module copper-base 65MHz FADC (ADC65)

Attenuator module

-Attenuation level (1/1, 1/8. 1/64) can be controlled via VME bus -have test input for calibration purpose

Status: The linearity of the signal turned to be bad -> modify the design

FADC module

FADC w/ Default shaping time $(1\mu s)$ work fine for the beam test (single bunch/pulse)

For T2K, we will have 8 bunches w/ 600ns spacing -> optimized the shaping time to be 50ns

Default shaping time: 1µs

