T.Ishida (IPNS, KEK)

Taku Ishida (IPNS, KEK) For the J-PARC v construction group

- Status of the Accelerators
- The Beam-line Construction, Apparatus Development, and Production

The T2K Experiment

- A next-generation long-baseline neutrino oscillation experiment, designed to observe the first signal of ve appearance
 - Pseudo-monochromatic, low-energy off-axis beam, tunable by changing the off-axis angle between 2° and 2.5° (En=0.8GeV ~ 0.65GeV)
 - Quasi-Elastic interactions are dominant, suitable to minimize the electromagnetic shower background caused by inelastically-produced π⁰

J-PARC

T.Ishida (IPNS, KEK)

4.2µs

 6π mm.mr (10 π @30GeV)

3.64 sec (2.1sec@30GeV)

UTRINO FACILITY

AT J-PARC

Spill width

Cycle

Beam Emittance

1x10²¹ protons per year
[130 days operation per year, 50GeV]

Bird's-Eye View (Feb. 2006)

EUTRINO FACILITY

AT J-PARC

T.Ishida (IPNS, KEK)

T.Ishida (IPNS, KEK)

2006/07/14, aside of DT

*ACS: Annular ring Coupled Structure, to be constructed in FY2008~2011

180MeV Linac at t=0 Installation almost fin. Klystron test: done Beam comissioning in this December ACS high power test for 400MeV upgrade: done

EUTRINO FACILITY

RCS / MR

AT J-PARC

Kicker & Septum Magnets for fast extraction

NBI06, CERN, September 2006

Possible Commissioning Scenario (IPNS, KEK)

- In order to achieve the high field acceleration as designed (25kV/m), improvement is needed for the magnetic alloy core of the RCS/MR RF.
- Commissioning will start for the linac in December 2006, for RCS in 2007, and for MR in 2008 with current RF system.
- T2K: Up to 100 kW within FY 2009.
- Need continuing upgrade
 - For RF (until 2010) and for Linac (until 2011).
- MR power recovery scenario is being discussed
 - Increasing repetition rate (cycle=3.64 to 2.04sec)
 - Reduce harmonic number of RCS from 2 to 1 (1x8 injections instead of 2x4).

The Neutrino Facility

T.Ishida (IPNS, KEK)

Beam-line collaboration

- Neutrino group, IPNS (Core)
 - Every beam line components (except S.C.magnets / cryo.)
 - New members for engineering works / DAQ control / ND
- Hadron group, IPNS
 - Monitor / N.C.magnets / Power supply
- Cryogenics group, IPNS
 - Cryogenics / Target Helium circulation system
- Cryogenics science center
 - Superconducting magnet / Cryogenics
- Mechanical Engineering Center
- Radiation Science Center

In collaboration with

- U. Tokyo: Primary beam monitor
- Kyoto U: Primary beam monitor, Muon monitor
- UK: Target, Target remote handling, Beam window, Baffle, Dump
- Canada : Remote chamber for the most downstream monitors, OTR, Remote maintenance
- US: Horn, Beam monitor, S.C. corrector magnets, GPS, Monitor electronics
- France: Quench detection system
- Korea: Proton monitor electronics

K.Nishikawa moving to KEK as leader of our division (IPNS)

- Further optimization of the civil construction design
 - DV length -20m
 - OA angle range 2~3deg → 2~2.5deg
 - ND hole depth -2.5m / Shorten vertical vending magnet
 - ► ND hole diameter 19m → 17.5m
 - Eliminate carry-in building, but only shaft and crane.
 - Reduce part of cooling system in TS/DV/BD in the earliest stage
- Impact on physics sensitivity is minimum

Decay Volume (Under 3NBT) T.Ishida (IPNS, KEK)

Oct., 2005

All cooling channels connected by 1,080 U-shape pipes.

Primary Beam-line

T.Ishida (IPNS, KEK)

Target Station

- Civil Construction
 - Underground part will be started very soon.
 - Surface part in spring 2008
- He vessel and support structure
 - Successful bid for three years of contract.
 - Parts construction in 2006
 - Assembly in 2007 and plumbing in summer 2008

Status for each components (IPNS, KEK)

Engineering Operation **Conceptual** Real Install Design Design **Production** test -ation **Proton Beam monitor** 2007~ 2008 Superconducting magnets ~10% 2008 2008 Done Done **Cryogenics** 2008 2008 **Normal Conducting magnets** ~25% 2007~ 2008 Vacuum system 2007~ 2008 Target 2008 2008 Horn 2008 2008 **Target Station** 2007~ 2008 **Beam Window** 2008 2008 **Decay Volume** ~60% 2008 **Beam Dump** 2008 2008 **Muon monitor** 2008 2008

- Working design in hand for most of the components
- Shifting to prototyping, final engineering design, and production

Normal conducting magnets

T.Ishida (IPNS, KEK)

Q360MIC

	Dipole	Quad.	Steer.	Total	(MIC)
Prep.	2(H)	5	3(H)+2(V)	12	(5)
FF	2(V)	4	2(H)+2(V)	10	(0)
Total	4	9	9	22	(5)

- Almost on schedule
- Magnets in the preparation section and iron yokes for final-focusing section magnets are under fabrication

Vacuum System

- Layout of the preparation section almost finalized
- Vacuum Chamber:
 - Ti and Al-alloy ducts for D
 - "Cross-shaped" aluminum ducts for Q
 - Semi-remote flange mover and hands-on clamp
- Gate valves, emergency-closing valves, ion pumps..
 - Preparing for tenders

Flange Mover, developed for MR

Beam Plug & Collimator

- A diffuser and a stopper made of invar.
 - 110MPa with a single pulse
 - Cf. normal iron: 2.7GPa
- Collimator in a conceptual design stage
- Barely in time to make them within this FY.

Superconducting magnet

Superconducting Combined Function Magnet

28 SCFMs in total, D: 2.6 T, Q: 18.6 T/m Length: 3.3m Current: 7,345A @ 50GeV

- Pre-production magnet successfully assembled and excited.
 - No spontaneous quenches to 105% of 50 GeV, with satisfactory field quality
- Mass production started
 - Three production magnets in hand
 - First doublet assembled and tested for cryogenic performance / alignment / quench protection
- Interconnect Corrector
 - Prototyping in collaboration with BNL
- Plan
 - 6 doublets each in FY'06/'07 + 2 in '08
 - Refrigerator construction: '06~'08
 - Transport line construction: '07~'08
 - Installation/system testing in CY'08

Doublet Cryostat Test

T.Ishida (IPNS, KEK)

- Optical window to observe cold mass alignment directly from outside
- Use laser distance meter to measure cold mass displacement during cool down

Movement when cooled well under control:

 $\Delta X=0.03\pm0.06$ $\Delta Y=0.95\pm0.09$ $\Delta Z=5.8\pm0.4$

Beam Monitors

- Configuration
 - Position : Electro-static monitor (ESM)
 - Profile : Segmented Secondary Emission Monitor (SSEM), OTR
 - Intensity : CT
 - Loss monitors (BLM): Ionization chamber

Status

- ESM: Wave form reproduced by simulation, 0.3mm position resolution demonstrated for the T2K beam.
- SSEM: ~0.25mm for position, ~0.23mm for width (beamtest at KEK NML)
- Cryogenic / irradiation test for SSEM remote handler
- Going to establish the engineering design by the middle of this FY

Beam loss monitor will be placed along the beam line.

NBI06, CERN, September 2006

NBI06, CERN, September 2006

Beam Window / Target OTR (IPNS, KEK)

Ti-alloy Beam Window with pillow-seal (CCLRC RAL)

- Complete window design in 2006
- Prototyping in 2007

OTR Ladder In front of the target (TRIUMF)

- Prototype test has been done.
- Irradiation test / support structure

Target

T.Ishida (IPNS, KEK)

Next design needs to focus on ease of manufacture

Cooling Path (Helium)

- Following issues are being studied.
 - Outer Titanium tube has been made. R&D for sealing ceramic underway.
 - Brazing between graphite and Ti-alloy is promissing.
- Helium cooling system is purchased and ready for full scale cooling test.
- FY06: Establish the actual equipment design and make full-set prototype.
 - Full scale cooling test using actual He circulation system.
 - Fixation and alignment mechanism should be developed.

Target Prototypes / Compressor

NBI06, CERN, September 2006

1st horn

- Successful operation at 320kA
- Long-term current operation test
- 2nd horn design / 3rd horn prototype in FY06

Support module

- Conceptual design done on
 - Remote coupling of horns and water / He pipes.
 - Kinematic alignment system
- R&D
 - Remote coupling of strip-lines
 - Water circulation system (7m pumping up)
 - Support module itself

Produce everything in FY2007

1st Horn with 320 kA

T.Ishida (IPNS, KEK)

T.Ishida (IPNS, KEK)

- Detailed design in FY06
- Machining: FY07
- Assemble/installation: FY08

- Two Independent System
 - Semiconductor detector array
 - Ionization chamber array
- Spill –by-spill monitor for the muon profile center

Near Neutrino Detectors at 280m (IPNS, KEK)

- **Off-axis detector**
 - Spectrum \diamond
 - **Cross section**
 - ve contamination
 - UA1 magnet, FGD, TPC, ۲ Ecal,...
- On axis detector 1
 - Monitor beam dir. ۲
 - Grid layout ۲
- Scintillator+WLS fiber with
 - MRS APD (Russia) ۲
 - MPPC (Hamamatsu)

T.Ishida

NBIO6, CERN, September 2006

Far Detector: SK-III

T.Ishida (IPNS, KEK)

NBI06, CERN, September 2006

- Facility construction is going well:
 - Decay volume (50m finished), primary beam line, target station
- Beam line equipment:
 - Shifting from design phase to prototyping and actual production
 - International contributions for crucial parts of the beam line components.
- Passing some of critical milestones:
 - Production of the 1st doublet of SCFM magnets
 - 1st Horn operation with 320 kA
- We should work harder to start experiment as scheduled !

Our acknowledge goes on to CNGS colleagues for organizing this workshop, in the midst of the busiest time.