T2K Proton Beam Position Monitors

Nick Hastings

Neutrino Beams & Instrumentation 2006

Introduction

Studies with the K2K beamline

- Simulating for T2K beamline
- Further work

4 Further work

< 6 b

Introduction

Introduction

4 Further work

Beam Test in the K2K beamline

Electrostatic Monitor (ESM)

- Confirmed suitability of basic monitor design
- ESM (not LPM, strip etc.)
- Four $\pi/2$ electrodes
- No transformers on outputs

Nick Hastings (U of T)

T2K Proton Beam Position Monitors

Simulation vs. Data (qualitative)

Macro structure

Simulation scaled by 50% (5.9 dB for 100 m) (*F*_{signal} < 100 MHz) to account for cable attenuation

NBI 2006 6 / 23

Simulation vs. Data (qualitative)

Micro structure

- 50% cable atten (in freq range of signal).
- Data taken with 5 GS/s oscilloscope
- White(ish) noise observed in data: from oscilloscope
 → Overlay 17 mV RMS noise to simulation (bin-by-bin)
- Strange signal shapes due to slightly non-Gaussian beam
- Reasonable agreement

Nick Hastings (U of T)

Simulation vs. Data (quantitative)

Spill by spill fluctuation in measured beam pos. gives monitor resolution

$$A \equiv \frac{L-R}{L+R} = 2\frac{x}{r} \frac{\sin \phi/2}{\phi/2} \{1 - \frac{2}{r^2} \frac{\sin \phi}{\phi} (\sigma_x^2 - \sigma_y^2 + x^2 - y^2) + \ldots\}$$
$$\Rightarrow x \simeq \frac{r}{1.8} A, \quad \sigma_x \simeq \frac{r}{1.8} \sigma_A$$

Results

$$\sigma_x^{data} = (0.202 \pm 0.005) \ \textit{mm}$$

 $\sigma_x^{sim} = (0.164 \pm 0.002) \ \textit{mm}$

Reasonable agreement

(\simeq 20% deviation)

- Non Gaussian beam
- Fluctuations in actual beam position?
- Good enough for these purposes
- Can now simulate T2K configuration

Simulating for T2K beamline

The "known" factors

Study

- Fixed parameters
 - Commissioning beampower
 - Least sensitive ESM (smallest electrode and larges radius)
 - Realistic cable attenuation
- Variables
 - Different sampling rates
 - Different precision (number of ADC bits)

Simulating for T2K beamline

The "unknown" factors

- Beam test showed significant white noise
- Must be from oscilloscope since long cable acts as lowpass filter (no reduction of noise at high freq. observed)
- Will use VME sampling ADCs for T2K: expect little noise from electronics
- Achieved resolution critically dependant on noise
- Don't know what noise to expect
- For now, introduce white noise before cable

NBI 2006 11 / 23

Sample output

Simulating for T2K beamline

T2K ESM performance

- Design spec asks for $\sigma_x < 0.5 \text{ mm}$
- Plan to use 100 MS/s 12 bit VME ADC from U. Washington

Nick Hastings (U of T)

T2K Proton Beam Position Monitors

NBI 2006 13 / 23

A

Further work

Calibration System

Nick Hastings (U of T)

T2K Proton Beam Position Monitors

NBI 2006 15 / 23

Further work

Production and Kyoto Beamtest

- Production drawings now being made (sketch below)
- Expect first ESM next month
- Beam test at Kyoto electron linac in December
- Test monitor and electronics

Expected test beam & signal

T2K Proton Beam Position Monitors

16/23

Further work

Schedule

Deve	lop ca	llib. sy	stem								
	Es	stablis	h calib	. proc	edure						
Eng.	Desig	In		Prep Const	& Arc t Cali	sectio	n nstala	tion			
	Prod	uction	of 1st	ESM				Final Const	Focus	sectio	on nst.
		Bean	ntest						,	,	Cabling
2006/08/01	2006/10/01	2006/12/01	2007/02/01	2007/04/01	2007/06/01	2007/08/01	2007/10/01	2007/12/01	2008/02/01	2008/04/01	2008/06/01

Nick Hastings (U of T)

- Using Electrostatic Monitors (ESM) with $\pi/2$ electrodes
- First real ESM expected in October
- Calibration system being developed
- Custom 12 bit, 100 MS/s
- Final performance heavily dependant on noise at JPARC
- Schedule tight... as usual

Supplementary Material

Supplementary Material

- Simulations
- Beam and ESM Parameters
- Calibration Stage

Simulations

Current density at point $\vec{a}(a, \theta)$ on beampipe wall (\simeq electrode):

$$egin{split} J_{ ext{img}}(ec{r},ec{a}) =& rac{I_{ ext{beam}}(r,\phi)}{2\pi a} rac{a^2-r^2}{a^2-2ar\cos(heta-\phi)+r^2} \ &=& rac{I_{ ext{beam}}(r,\phi)}{2\pi a} \left[1+\sum_{k=1}^\infty \left(rac{r}{a}
ight)^k\cos k(heta-\phi)
ight] \end{split}$$

- Expand to 3rd order, integrate over θ for the electrode $(\pm \frac{\pi}{4}) \rightarrow$ line charge density (lcd)
- Convolve electrode (lcd) w/ beam profile \rightarrow image charge
- Time derivative \rightarrow current source
- Simulate electronics → voltage

Beam and ESM Parameters

Parameter	K2K	T2K
Protons/pulse	$2.8 imes 10^{12}$	$3.3 imes10^{12}$
Bunches/pulse	9	8
Protons/bunch	$0.31 imes 10^{12}$	$0.41 imes10^{12}$
Bunch width	10 ns(RMS)	58 ns(Full width)
Bunch spacing	125 ns	598 ns
Electrode length	20 cm	10 cm
Electrode coverage	π/2	$\pi/2$

- Using T2K 1% beam power
- ESM geometry in normal conducting section (least space)
- Assume T2K RMS=(Full width)/4

Calibration Stage

Calibration Stage

NBI 2006 22 / 23

Calibration Stage

Calibration Stage

