NuMI Primary Proton Beam

Bob Zwaska, Fermilab for Sam Childress Focus on Stability

NuMI Beam Performance, January 2005-July 2006

Main Injector & NuMI

Main Injector is a rapid cycling accelerator at 120 GeV

➢ from 8 to 120 GeV/c in ~ 1.5 s

up to 6 proton batches (~ 5×10¹² p/batch) are successively injected from Booster into Main Injector

Main Injector in parallel provides protons for the Collider program (anti-proton stacking)and transfers to the Tevatron) and NuMI

total beam intensity ~ 3×10^{13} ppp, cycle length 2 s

Mixed mode: NuMI & Pbar stacking

 \succ two single turn extractions within ~ 1 ms:

- 1 batch to the anti-proton target, 5 batches to NuMI
- Normally the batch extracted to the Pbar target comes from

the merging of two Booster batches ("slip-stacking") (up to 0.8×10¹³ ppp)

> the default mode of operation is mixed-mode with slip-stacking

NuMI only

> up to 6 Booster batches extracted to NuMI in ~ 10 μ s

Extraction from Main Injector

Primary Proton Line

NuMI line

Primary Beam Optics

Specifications: fractional beam losses below 10⁻⁵ (Groundwater protection, residual activation)

NuMI Initial Beam Commissioning

***** December 3-4 2004. Commissioning the primary proton beam

target out, horns OFF

➤ small number of low intensity (1 batch with 3×10¹¹ protons) pulses carefully planned

> beam extracted out of Main Injector on the 1st pulse

beam centered on the Hadron Absorber, 725 m away from the target, in 10 pulses

> all instrumentation worked on the first pulse

***** January 21-23 2005. Commissioning of the neutrino beam

> target at z=-1 m from nominal \Rightarrow pseudo-medium energy beam, horns ON

> MI operating on a dedicated NuMI cycle, at 1 cycle/minute, with a single

batch of 2.6×10¹² protons, few pulses up to 4×10¹² protons

Final tuning of the proton line

> neutrino interactions observed in Near Detector

> NuMI project met DoE CD4 goal (project completion)

February 18-22 2005. High intensity beam in the NuMI line

> MI operating on a dedicated NuMI cycle in multi-batch mode

➢ with 6 batches, we achieved a maximum intensity of 2.5×10¹³ p/cycle 6

Beam Extraction in 10 Pulses achieved to hadron absorber at 1 km distance

December 3-4, 2004

Profile monitor output along the beamline (few pulses later) (from the extraction up to the target - ~ 400 m distance)

0-

-15

-10

-5

0

Vertical Position (inches)

5

10

15

0.27173

4.7484

4.6779

0.076763

Measuring the Beam Intensity

Three sensors are used to measure the NuMI proton intensity:

A DC current transformer (DCCT), which measures the intensity in the MI. 2 toroids (Pearson Current Transformers Model 3100) that measure the intensity at the beginning (TOR101) and just before the target (TORTGT)

Description	Uncertainty						
Absolute calibration with a	< 1.0%						
current source	for >1 E12						
Calibration with DCCT	-0.6%						
TOR101 vs TORTGT difference	0.2%						
Stability (compared to DCCT)	0.4%						
Sensitivity	0.06 %						
Charge leakage	0.5%						
Pedestals (TORTGT)	~ -0.0016 E12						
Noise (TORGT)	~ 0.008 E12						
Total	1.4%						

Measuring the Beam Profile

Measuring the Beam Position

Characteristics of NuMI Beam Position Monitors:

- Software algorithm to search
 400 μsec to find the beam.
- NuMI bunches come in 6 batches from booster. Position is measured batch by batch.
- Linear over 15-20 mm. 50 μm accuracy in pretarget.
- 11 vertical and 13 horizontal measurements over 360m.

Beam Commissioning & Start up for Data Taking

Transition to Operations

- Restarted after target checkout in late April
- Main Control Room
 Operators take control of running NuMI beam
 (12 May)
- Initiate NuMI running during Recycler shot setup (18 May)
- Initiate NuMI running during TeV shot setup (22 June)
 - We needed to be a "low overhead" beam to Operators to have these running modes

- Keys to NuMI Proton beam operation
 - Comprehensive beam permit system : ~ 250 parameters monitored
 - Open extraction/primary beam apertures – capability of accepting range of extracted beam conditions
 - Superb beam loss control
 - Good beam transport stability
 - Autotune beam position control
 - No manual control of NuMI beam during operation

NuMI 120 GeV Primary Beam

- Key specifications are:
 - Very low beam loss <1E-5 fractional loss for large regions of transport. (unshielded intense beam passing thru ground water reservoir)
 - Maintain position on target to 0.25 mm rms & angle to < 60 µrad.
 - Intense 400 kWatt beam (design) => tight control over residual activation

Kicker System Requirements

tightened specs during design process

	Early Requirement	Final Requirement					
Integrated Field	2.2 kG • m	3.6 kG • m					
(120 GeV protons)	(550 µrad)	(900 µrad)					
Number of Magnets	2	3					
Field Flatness	± 1%	$< \pm 1$ % (Best Effort)					
Repeatability	±1%	$< \pm 1/2\%$ (Best Effort)					
(over 8 hours)							
Field Rise Time	1.52 μs						
Flat top length	9.68 µs for 6 Batches, 8.08 µs for 5 Batches						
Magnetic Aperture	1.98 m x 10.7 cm x 5.2 cm (each magnet)						

Maximal Beam Sizes, 500pi & 4E-3, vs Clearances

Station (m)

Performance Overview Optics: Design vs. Measured Beam Sigmas

High-Intensity: Beam Permit System

- Inhibits beam on a rapid basis
- > 200 inputs
- Checks that radiation levels have not been exceeded
 - Prevents beam from being accelerated
- Beamline components e.g. magnet ramps
 - Can prevent acceleration, but also extraction
- Beam quality in Main Injector
 - Position, abort gap

Beam Permit System

- Routinely inhibits beam when components fall outside tolerancs
- Prevents extraction when magnets are set to correct currents
- Prevents extraction when beam is in the abort gap
- Inhibits beam on unusual behavior
 - E.g. orbit movement
- Can allow one bad pulse because of magnet variation ~ 1%
 - May be upgraded

3 turns of RWM output during multi-batch running

Autotune

- Automatic program continuously tunes the beamline
 - Used for commissioning, but numbers were verified and applied by hand
 - Applied to main bends during commissioning, trims during operation

Tuning Matrix (Invertible)

🚳 Edit Control File																			
File Header Trims Aux. Intensities		sities	Bpms & Intensities		Matrix	K													
mm/A	HT101K	HT105K	HT107K	HT109K	HT112K	HT114K	HT115K	HT117K	HT119K	HT121K	VT103K	VT106K	VT108K	VT110K	VT111K	VT114K	VT116K	VT118K	VT121K
HP104	-0.4158																		ĺ
HP107	0.4934	-0.9430																	
HP109	0.2962	0.3038	-0.9618	-0.0644															
HP112	-0.9479	0.7817	1.0548	-1.0365	-0.0435														
HP114	0.6341	-1.5009	0.4224	1.3862	-1.0942	-0.0432													
HP115	0.5302	-1.0591	0.1271	1.0203	-0.6899	-0.1830													
HP117	0.7786	-0.6557	-0.8505	0.8610	0.0200	-0.9428	-0.8964												
HP119	0.3686	0.1173	-0.8961	0.1046	0.5008	-0.7670	-0.8838	-0.6423	-0.0416										
HP121	0.0818	0.6033	-0.8645	-0.3857	0.7741	-0.6028	-0.8160	-1.0537	-0.4959	-0.0205									
HPTGT	-0.0653	0.6856	-0.6560	-0.5190	0.7226	-0.3936	-0.6021	-1.0014	-0.5882	-0.2253									
VP106											0.9685								
VP108											-0.2362	0.9442	0.0086						
VP110											-0.9402	-0.2930	0.9676	0.0412					
VP111											-1.0140	-0.5998	1.1089	0.3025	0.0436				
VP113											1.3561	-0.8488	-1.1027	1.0965	1.3586				
VP116											-0.0520	0.6444	-0.0986	-0.5984	-0.5773	0.5104			
VP118											-0.9390	0.1369	0.8674	-0.3493	-0.5538	-0.3460	0.6509		
VP121											-0.6933	-0.5294	0.7857	0.3153	0.1322	-0.7797	0.5784	0.6504	0.0167
VPTGT											-0.4545	-0.6318	0.5806	0.4656	0.3311	-0.7479	0.4233	0.7410	0.2216
Test Invert																			
Control file is unchanged																			
					Con	nmit	Sav	e to Disl	·	Load	from Di	isk	Ca	ncel					

Effects of Kicker Strength

Measurement of Kicker Stability with Beam

- Measured Change in Position
- BPM Accuracy of ~10 µm
- Total Displacement of 43 mm

Jan. '06 Beam Stability on Target NuMI Only

Vertical Batch Position at Target (NuMI-only), Jan '06

Horizontal Batch Position at Target (NuMI-only), Jan '06

Note expanded scale. Horizontal sees kicker stability effects.

Error on mean batch position < 60 microns for all batches (160 μ for batch 1)

Jan. '06 Beam Stability on Target Mixed Mode

Horizontal Batch Position at Target (NuMI-mixed), Jan '06

Hor

Vertical Batch Position at Target (NuMI-mixed), Jan '06

Note bimodal effect of Pbar kicker on 1st NuMI batch [Either even or odd # turns between extractions]. Error on mean batch position increased to 90 μ. (Many batch 1 points > 250 μ spec.)

Beam Stability on Target Interleaved Mode

Horizontal Batch Position at Target (NuMI-mixed,intlvd), Jan '06

Horizontal Batch Position at Target (NuMI-mixed,intlvd), Nov '05

Some worsening of momentum difference between extraction modes. Are preparing separate Autotune corrector files for each.

Jan '06 Average per Pulse Primary Beam Loss – NuMI Only

Average losses along NuMI beamline in NuMI-only mode, Jan '06

Jan '06 Average per Pulse Primary Beam Loss – Mixed Mode

Average losses along NuMI beamline in NuMI-mixed mode, Jan '06

Significant improvements in earlier loss from Pbar slip stacked batch

Beam Widths with Intensity

NuMI final beam profiles versus average batch intensity

Near Detector CC Energy Spectra: Batch 1 vs Other Batches

NuMI Beam History

Protons, Beam Power, Intensity

NuMI Beam Performance, January 2005-July 2006

Summary

- Primary proton line has been operating reliably since startup
- Well verified optical model
- Autotune keeps beam on target even with perturbations
 - Prerequisites are the optical model and beam permit
- Perturbations come from kicker systems
 - No losses, but beam position at target varies
- Losses come wholly from large amplitude beam generated through slip-stacking