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Main Injector & NuMI
Main Injector is a rapid cycling accelerator at 120 GeV

from 8 to 120 GeV/c in ~ 1.5 s
up to 6 proton batches (~ 5×1012 p/batch) are 
successively injected from Booster into Main 
Injector

Main Injector in parallel provides protons for the 
Collider program (anti-proton stacking )and transfers 
to the Tevatron) and NuMI

total beam intensity ~ 3×1013 ppp, cycle length 2 s

Mixed mode: NuMI & Pbar stacking
two single turn extractions within ~ 1 ms:

1 batch to the anti-proton target, 5 batches to NuMI
Normally the batch extracted to the Pbar target comes from

the merging of two Booster batches (“slip-stacking”) (up to 0.8×1013 ppp)
the default mode of operation is mixed-mode with slip-stacking

NuMI only
up to 6 Booster batches extracted to NuMI in ~ 10 μs
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Extraction from Main Injector

Kickers & Septa



Primary Proton Line
Total length ~ 350 m

MI tunnel

bringing the protons to the 
correct pitch of 58 mrad

bending down 
by 156 mrad

final focus

trim magnets

carrier tunnel
~70 m

beam pipe 12” Ø

Main Injector

NuMI line

Recycler
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Primary Beam Optics

Specifications: fractional beam losses below 10-5

(Groundwater protection, residual activation)

Max. dispersion point
±35 mm aperture
95% beam size ±7 mm 
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NuMI Initial Beam Commissioning
December 3-4 2004. Commissioning the primary proton beam

target out, horns OFF
small number of low intensity (1 batch with 3×1011 protons) pulses 

carefully planned
beam extracted out of Main Injector on the 1st pulse
beam centered on the Hadron Absorber, 725 m away from the target, in 

10 pulses
all instrumentation worked on the first pulse

January 21-23 2005. Commissioning of the neutrino beam
target at z=-1 m from nominal ⇒ pseudo-medium energy beam, horns ON
MI operating on a dedicated NuMI cycle, at 1 cycle/minute, with a single 

batch of 2.6×1012 protons, few pulses up to 4×1012 protons
final tuning of the proton line
neutrino interactions observed in Near Detector
NuMI project met DoE CD4 goal (project completion)

February 18-22 2005. High intensity beam in the NuMI line
MI operating on a dedicated NuMI cycle in multi-batch mode
with 6 batches, we achieved a maximum intensity of 2.5×1013 p/cycle
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Beam Extraction in 10 Pulses achieved to 
hadron absorber at 1 km distance

Profile monitor output along the beamline (few pulses later)
(from the extraction up to the target - ~ 400 m distance)

December 3-4, 2004
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Beam Commissioning &
Start up for Data Taking

December 3-4
First beam extracted
Proton beam-line setup

January 21-23
First ever ν beam !
Observation of neutrino 
interactions in Near 
detector

February 18-22
High intensity beam in Main 
Injector. NuMI only cycle, 

March 16
Start of MINOS 
operation
Steady mixed-mode 
running in Main 
Injector

March 23
Target failure

2.5×1013 ppp



12

Transition to Operations

– Restarted after target 
checkout in late April

– Main Control Room 
Operators take control of 
running NuMI beam

(12 May)

– Initiate NuMI running 
during Recycler shot 
setup (18 May)

– Initiate NuMI running 
during TeV shot setup

(22 June)
• We needed to be a “low 

overhead” beam to 
Operators to have these 
running modes

• Keys to NuMI Proton beam 
operation –
– Comprehensive beam permit 

system : ~ 250 parameters 
monitored

– Open extraction/primary beam 
apertures – capability of 
accepting range of extracted 
beam conditions 

• Superb beam loss control
– Good beam transport stability
– Autotune beam position control

• No manual control of NuMI 
beam during operation
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NuMI 120 GeV Primary Beam

• Key specifications are:
– Very low beam loss <1E-5 fractional loss for large regions 

of transport.  (unshielded intense beam passing thru ground 
water reservoir)

– Maintain position on target to 0.25 mm rms & angle to < 60  
µrad.

– Intense 400 kWatt beam (design) => tight control over 
residual activation
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Kicker System Requirements
tightened specs during design process

32Number of Magnets

1.98 m x 10.7 cm x 5.2 cm (each magnet)Magnetic Aperture

< ± 1/2% (Best Effort)

< ± 1 % (Best Effort)± 1%Field Flatness

± 1%Repeatability
(over 8 hours)

9.68 µs for 6 Batches, 8.08 µs for 5 BatchesFlat top length

1.52 µsField Rise Time

Final RequirementEarly Requirement

3.6 kG • m
(900 µrad)

2.2 kG • m
(550 µrad)

Integrated Field
(120 GeV protons)

C.Jensen lead enginer
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 Maximal Beam Sizes, 500pi & 4E-3,  vs Clearances
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Performance Overview
Optics: Design vs. Measured Beam 

Sigmas
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High-Intensity: Beam Permit System
• Inhibits beam on a rapid basis

• > 200 inputs

• Checks that radiation levels have 
not been exceeded
– Prevents beam from being accelerated

• Beamline components – e.g. 
magnet ramps
– Can prevent acceleration, but also 

extraction

• Beam quality in Main Injector
– Position, abort gap
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Beam Permit System
• Routinely inhibits beam when 

components fall outside tolerancs

• Prevents extraction when magnets 

are set to correct currents

• Prevents extraction when beam is in 

the abort gap

• Inhibits beam on unusual behavior 

– E.g. orbit movement

• Can allow one bad pulse because of 

magnet variation ~ 1%

– May be upgraded

3 turns of RWM output during 
multi-batch running
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Autotune
• Automatic program continuously tunes the beamline

– Used for commissioning, but numbers were verified and applied by hand
• Applied to main bends during commissioning, trims during operation
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Tuning Matrix (Invertible)
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Effects of Kicker Strength

• Particle loss through line is 
small for many kicker 
strengths/displacements

– Position on target 
varies instead
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Measurement of Kicker Stability 
with Beam
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• Measured Change in 
Position

• BPM Accuracy of ~10 µm
• Total Displacement of 43 

mm
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Jan. ‘06 Beam Stability on Target
NuMI Only

Hor Ver

Note expanded scale. Horizontal sees kicker stability effects.

Error on mean batch position < 60 microns for all batches (160 µ for batch 1)
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Jan. ‘06 Beam Stability on Target
Mixed Mode

• Note bimodal effect of Pbar kicker on 1st NuMI batch [Either even or odd # 
turns between extractions]. Error on mean batch position increased to 90 µ. 
(Many batch 1 points > 250 µ spec.)

Hor Ver
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Beam Stability on Target
Interleaved Mode

Jan 06 Nov.05

Some worsening of momentum difference between extraction modes. 
Are preparing separate Autotune corrector files for each.
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Jan ’06 Average per Pulse
Primary Beam Loss – NuMI Only

~5E-6 
loss

Extraction Max.Dispersion Profile 
Monitor
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Jan ’06 Average per Pulse
Primary Beam Loss – Mixed Mode

~5E-6

loss

Significant improvements in earlier loss from Pbar slip stacked batch 
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Beam Widths with Intensity
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Special
Test

Normalized Neutrino Rates vs Time

B. Rebel 
Plot

Special Tests
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Near Detector
CC Energy Spectra: Batch 1 vs Other Batches

T. Osiecki

Plot
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NuMI Beam History
Protons, Beam Power, Intensity
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Summary

• Primary proton line has been operating reliably since startup

• Well verified optical model

• Autotune keeps beam on target even with perturbations
– Prerequisites are the optical model and beam permit

• Perturbations come from kicker systems
– No losses, but beam position at target varies

• Losses come wholly from large amplitude beam generated 
through slip-stacking 


