T2K OTR Beam Profile Monitor

Status Report David Morris - TRIUMF

NBI 2006 - CERN

9/8/2006

Agenda

- OTR System Design
 Prototype Tests
- Materials Studies

OTR Beam Profile Monitor Members

- York University Sampa Bhadra, Brian Kirby, Slavic Galymov
- University of Toronto John Martin, Mircea Cadabeschi, Alysia Marino
- TRIUMF Akira Konaka, David Morris, Victor Verzilov, Clive Mark, Mike Gallop

Specifications

- Position of proton beam to 1mm
- Profile to ~ 10%
- Ladder with multiple OTR foils ~20 cm upstream of target face
- Helium environment ~9 m light path
- Four mirrors with dog-leg for radiation block
- 100 nsec camera shutter for micro-bunch imaging
- Radiation hard camera with remote readout electronics

Beam Characteristics

• T=0

9/8/2006

- # of bunches/ spill will be 8
- 30GeV w/ 2.1 sec spill

Optical Path

NBI 2006 - CERN

9/8/2006

Foil Ladder Mechanism

Camera System

Photek developed a MCP/taper/sensor package for UltraViolet Imaging Telescope on the ASTROSAT satellite which is identical to OTR requirements.

CMOS image sensor Fibre Taper

Micro Channel Plate Sira (now EWT Cameras Ltd) developed remote radiation hard camera using FillFactory Star250 CMOS sensor. 5 MRad tolerance.

Camera Controller

9/8/2006

NBI 2006 - CERN

Remote Sensor 1

Components for Study

- OTR operation as beam profile monitor
- Front/Back lighting system
- OTR Foil Materials light yield
- Foil and mirror materials radiation effects

Image Analysis

Distortion Analysis

Prototype tests at NRC

Elekta Linear Accelerator
20 MeV Electron beam at 400 nA DC
Ti90/Al6/V4 exit window 43µm thick
Distance to foil 25mm
15% scale model of optics
Peltier cooled CCD camera

20Mev e- versus 30 Gev p

- J-PARC beam is 3x10¹⁴ protons per spill (8 micro- bunches)
- 200nA beam at NRC corresponds to 1.25x10¹²/sec
- OTR light yield goes with the velocity (gamma²) of the particles. Velocity of 20MeV electron is the same as 40GeV proton beam
- 1sec exposure at NRC corresponds to 0.4% of the full intensity (750MW) J-PARC spill or 3% of full J-PARC micro-bunch.

Titanium alloy foil with backlight holes and front markings

Foil mounted close to exit window to reduce multiple scattering

9/8/2006

OTR Images – Foil Reflectivity

Titanium foil

Aluminum foil

Polycrystalline graphite foil

Foil Material	Amplitude	Reflectivity
Ti-alloy	300	0.4-0.5
Aluminum	1422	0.9
Graphite	37.9	0.1-0.2

Foil Surface Effects

Ink marks and scratches on the foil are observable.
Perimeter holes on foil for backlight and registration.

9/8/2006

Image Processing

Image Processing

Original Image

Corrected Image

9/8/2006

Current Work

- Front/Back lighting components
- Radiation damage studies in proton beam
- Mechanical design of target ladder

Front/Back Lighting

- Front and back lighting of the foil for alignment and focusing of image
 Nichrome wire filament to survive operation in air or helium
- Multiple filaments for redundancy

Radiation Damage Studies

- TRIUMF 500 MeV Proton Beam at 50 to 100 µA
- J-PARC equivalent beam intensity is 15 uA
- Beam size similar, accelerated beam exposure
- Two part cassette, helium filled 1 atm
- Multiple samples in one cassette is possible

Motorized microscope with digital camera on X-Y table in hotcell

9/8/2006

NBI 2006 - CERN

26

Conclusions

- Optics agree with simulations using model
 OTR provides effective tool for beam profile monitoring
 Radiation damage analysis to determine
 - beam effects.