

CNGS Secondary Beam Monitors: Design and Performance

- 1. Design
- 2. Commissioning
- 3. Performance

• Secondary Beam Design and Layout

TBID: <u>**T**</u>arget <u>**B**</u>eam <u>**I**</u>nstrumentation <u>**D**</u>ownstream</u>

IonCh: Ionization Chamber

Installation of the horn in the target chamber

0

3,751

I I IIII

Horn

Decay Tube

Decay tube: pressure increase vs. time

- → steel pipe
- → 1mbar
- → 994m long
- → 2.45m diameter
- → entrance window: 3mm Ti
- exit window: 50mm carbon steel, water cooled

Decay tube is closed with → 3mm Titanium window

Must be protected by a 'shutter' when access → Hardware Interlocked!!!

Hadron Stop

cooling modules

•Cooling modules: stainless steel tubes in Al blocks • Several temperature sensors (both in target chamber and in hadron stop)

graphite

• Secondary Beam Instrumentation

TBID + 2 Ionization Chambers

Purpose:

- Check efficiency with which protons are converted into secondaries
 - → Multiplicity (Compare with BFCT upstream of the target)
 - \rightarrow Misalignment of the Beam

TBID (Target Beam Instrumentation Downstream)

TBID Monitor

- Secondary emission monitor
- 12 µm Ti foils
- better than 10⁻⁴ mbar vacuum

Ionization Chambers in Target Chamber

TBID Monitor might not survive if high intensity beam misses the target

→Ionization Chambers as back-up

SPS type BLM

- N₂ filled ionization chamber
- Radius = 4.75 cm
- Gap-width = 0.55 cm
- 30 gaps
- Bias: 800V-1500V

Cross-Hair

Muon Monitors

- Monitoring of:
 - → muon intensity
 - → muon beam profile shape
 - → muon beam profile centre
- Muon intensity:
 - → Up to 7.7x10⁷ per cm² and 10.5µs
- Dynamic range: 10⁵
- Accuracies:
 - → absolute 10 %
 - → relative 3 %
 - → reproducibility: cycle to cycle 1%, one year 5%

Muon Monitor Layout

LHC type BLMs (Beam Loss Monitors for LHC)

- → Parallel electrodes separated by 0.5 cm
- → Stainless steel cylinder
- → Al electrodes
- → N₂ gas filling at 100 mbar over pressure
- → Diameter=8.9cm, length=60cm, 1.5 litre

- → 37 fixed monitors (Ionization Chambers)
- → 1 movable chamber behind fixed monitors for relative calibration
- Movement by stepping motors

• Secondary Beam Commissioning

Reading from TBID and collimator's ionization chambers vs. BPM2

NBI, 8 September 2006

Vertical Beam Scan, Target Out

Reading from TBID and collimator's ionization chambers vs. BPM2

Intensity on TBID vs. BPM2 position

Target vs. Horn Alignment

target vs. horn misalignment: 3 mm → 10.1 cm shift in Muon Pit1 6 mm → 19.1 cm 9 mm → 24.3 cm

Muon pit 1: more sensitive to target vs. horn alignment

E. Gschwendtner, CERN

Muon pit 2: more sensitive to beam vs. target alignment

horizontal muon detectors pit1, target out, horn/refl off, ~ 3E11 protons

NBI, 8 September 2006

E. Gschwendtner, CERN

vertical muon detectors pit1, target out, horn/refl off, ~3E11 protons

E. Gschwendtner, CERN

Horn/Reflector Timing Tests

Horn/Reflector Timing Tests

Comparison Nominal-Negative Polarity II

NBI, 8 September 2006

Target Unit Tests

unit 1 : polycrystalline graphite by Carbone-Lorraine 2020 PT density 1.76 g/cm3

unit 3: carbon-carbon composite by Carbone-Lorraine A035 density >1.75 g/cm3

Average of 2 extraction, ~1.2E13 protons

3. Status

Quality check - muon monitors (example: Pit 1 - horizontal plane)

comparison measurement-simulation, horizontal pit1 0.4 meas: nominal sim: nominal 0.35 0.3 0.25 charges/pot 0.2 0.15 0.1 0.05 0 -157.5 -146.3 -135 -123.8 -112.5 -101.3 -90 -78.75 -67.5 -56.25 -45 -33.75 -22.5 -11.25 0 11.25 22.5 33.75 45 56.25 67.5 78.75 90 101.2 112.5 123.7 135 146.2 157.5 5 5 5 data <> Fluka cm PRELIMINARY more on Friday, 8 Sept. (Edda's talk)

Muon Monitors, Vertical Pit 1 0.4 Measurement Simulation 0.35 0.3 0.25 charges/pot 0.2 0.15 0.1 0.05 0 45 56.25 67.5 78.75 90 101.2 112.5 123.7 135 146.2 157.5 -157.5 -146.3 -135 -123.8 -112.5 -101.3 -90 -78.75 -67.5 -56.25 -45 -33.75 -22.5 -11.25 0 11.25 22.5 33.75 Fluka simulation; P. Sala et al cm

• Secondary Beam Instrumentation Performance during Operation

average muon monitor signal, ~1.5E12 protons, horizontal pit1

TBID Performance

Muon Monitor Linearity

E. Gschwendtner, CERN

Summary

- Detailed hardware commissioning
- **'Dry runs' paid off!**
 - → Hardly any problems with the control system
- Secondary beam line has been successfully commissioned

\rightarrow CNGS is operational

Now operational work starts:

- Performance studies,
- Systematics,
- etc.....