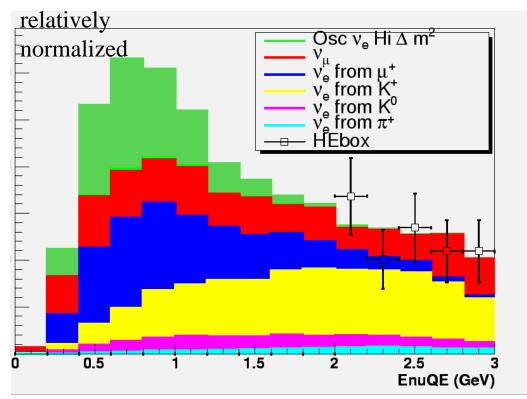

Constraining neutrinos from kaon decay in MiniBooNE

Kendall Mahn Columbia University

- Oscillation backgrounds
- Kaon measurements in MiniBooNE
 - high energy v_{μ} events from K+
- Summary

MiniBooNE beamline



Pop Quiz!

Protons hit Be target, producing:

- a) π + (primary source of ν_{μ})
- b) K+ decay to v_{μ} , v_{e}
- c) K^0 decay to v_{μ} , v_e
- d) all of the above

Oscillation search

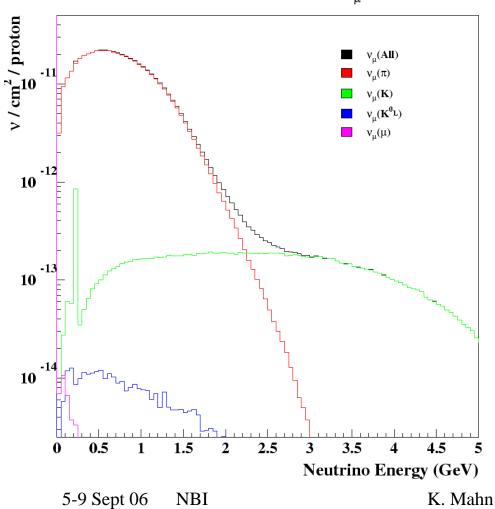
Events in $E_{\nu}(QE)$ bins after oscillation selection cuts

NBI

5-9 Sept 06

• shape subject to change as final cuts are decided

this talk

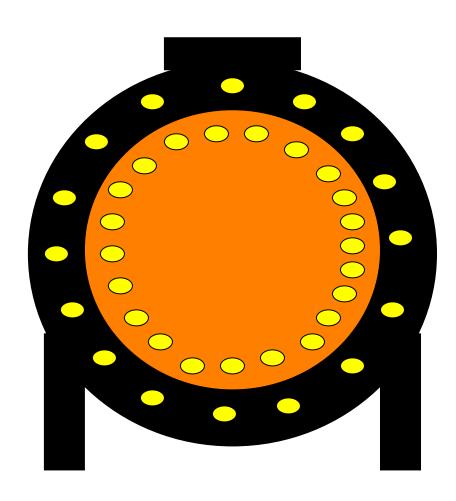

K. Mahn

Signal ($\Delta m^2=1 \text{ eV}^2$, $\sin^2 2\theta=0.004$ Background

- misidentified v_{μ} (mainly π^0 s)
 - constrained by observed π^0 S
- v_e from muon decay
 - muon produced for each $\nu_{\mathfrak{u}}$
 - constrained via ν_{μ} spectrum because π decay is very forward
- v_e from K+, K⁰, π + decay
 - K^0 , π + external data parameterization and errors are sufficient
 - Must measure K+ normalization due to uncertainties in production

Measuring neutrinos from K+

Beam Monte Carlo Predicted ν_{μ} Fluxes


Neutrinos from K+ are buried under neutrinos from π + except at high energies

⇒ Look at highest energy events in MiniBooNE

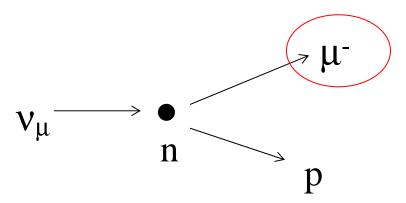
 \Rightarrow Search for K+ ν_{μ} events

Rate of V_{μ} larger than V_{e} ; different backgrounds

The MiniBooNE detector

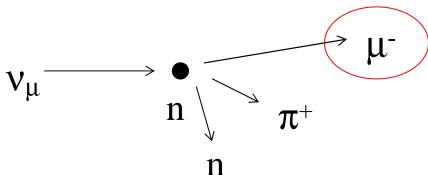
12 m diameter light detector filled with mineral oil

- 1280 PMTs in inner region
- 240 PMTs in outer "veto" region


 ν_{μ} events appear as Cherenkov rings

- Energy based on the charge read out from the PMTs response to light in the tank
- Track length is derived from the geometry of the Cherenkov ring

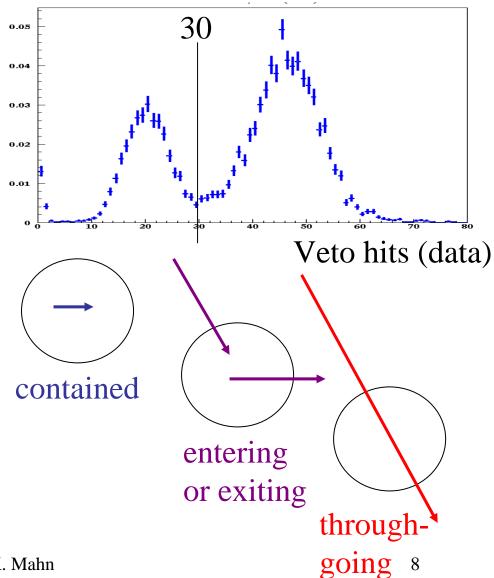
5-9 Sept 06 NBI K. Mahn 5


Neutrino Interactions

• Charged Current Quasi-elastic (CCQE)

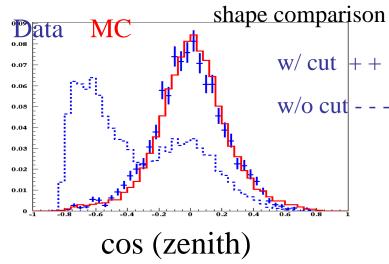
Both of these interactions have a primary μ , which we will use to identify ν_{μ} from K+ decay

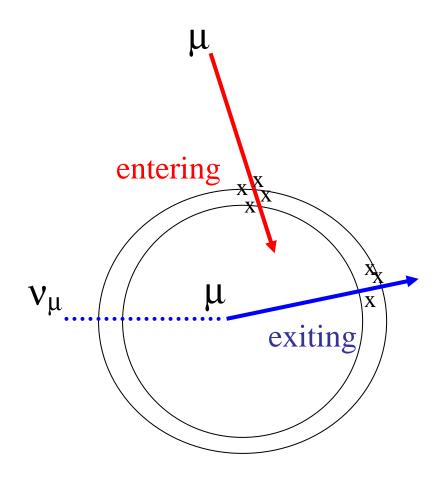
• Charged Current single pion production ($CC\pi^+$)


Selecting v_{μ} events at high energy

Basic cuts:

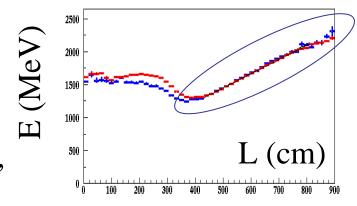
- Event is in time with the beam
- Observed energy in inner detector > 2 GeV
 - Predominantly K+ decay neutrino events
- Event is in the forward direction of the beam
- Passes cosmic ray reduction cuts
 - want v_{μ} from CC events, not cosmic ray muons


Cosmic ray reduction cuts (I)

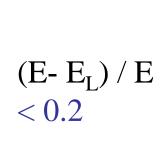

- Veto hits < 30
 - Veto hits < 6 are "contained"</p> and have no cosmic ray contamination
 - > 30 hits are through going cosmic rays that enter and exit the inner tank
- Why not consider only contained events?
 - Requiring containment is an effective energy cut; many K+ neutrino events exit the inner tank
 - Must separate incoming cosmic rays from exiting neutrino events

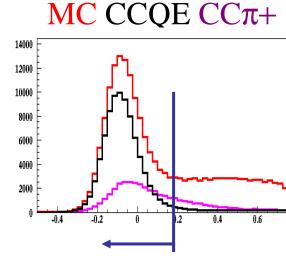
Separating entering cosmic rays from exiting neutrino events

- Entering cluster hits less than 5
 - "Entering cluster": hits in the veto that are consistent with the direction of the observed track
 - No excess of events in veto hits, downward direction are observed after this cut



Selecting ν_{μ} CCQE, CC π + events


Select events consistent with a muon


- Form a variable, E_L,
 which is an energy
 based on the track
 length
- Select events with a small difference between E_L and the observed energy, E
- These events are mainly CCQE,CCπ+

Data MC

 $E_L = 2*L + 370$

Characteristics of the high energy v_{μ} from K+ sample

- 76% CCQE/CC π + ν_{μ} from K+ decay
- 24% background events
 - primarily from v_{μ} from π + decay and CC π^0 events
- Neutrino energies between 2-3 GeV

This sample sets the normalization of the ν_e from K+ decay in the oscillation sample

Shape of the K+ intrinsic v_e flux in the oscillation sample is given by external data Sanford-Wang parameterization

5-9 Sept 06 NBI K. Mahn 11

Current (not final) systematics

Statistical uncertainty = 5%

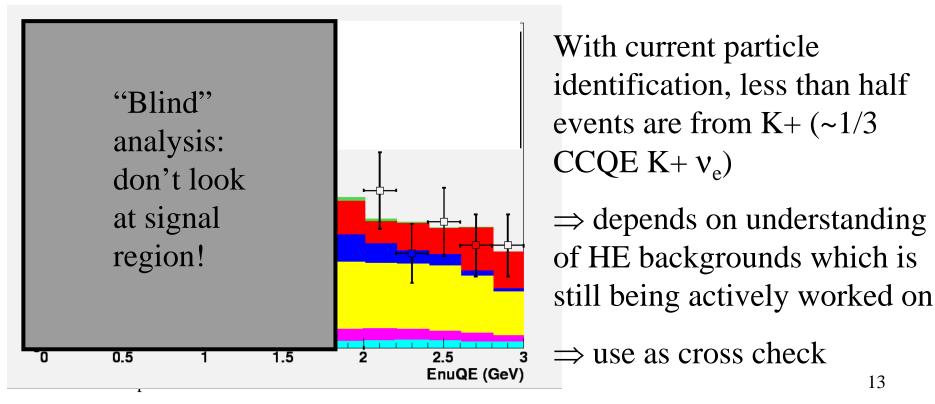
Detector (light propagation model, PMT response, etc) = 10%

expected to decrease with recent work

Cross section uncertainty = 13%

• MA(QE), Fermi momentum in the nucleus, binding energy, etc; to be constrained further by our analysis of CCQE ν_{μ} events at lower energies

Flux uncertainties = 7 %


• pion, kaon Sanford-Wang fit uncertainties, does not include parameterization error

Beam uncertainties = 2%

• skin depth, horn current variations, does not include p.o.t. uncertainty

Other ways to measure neutrinos from K+

- Measure muons from K+ via LMC (Little Muon Counter)
 - \Rightarrow consistent with HE ν_{μ} sample
- Apply v_e selection cuts for oscillation analysis to high energy region

Summary

- The observation of ν_{μ} to ν_{e} oscillations depends on the understanding of the ν_{e} in the beam from K+
- The high energy v_{μ} sample and LMC provide MiniBooNE with a normalization for these intrinsic v_e events from K+

5-9 Sept 06 NBI K. Mahn 14