Using longitudinally varying fields for lower emittance

Stefania Papadopoulou* +,Fanouria Antoniou *, Yannis Papaphilippou* *CERN, +University of Crete

Longitudinally variable bends ${ }^{[1]}$

$\rho_{s t}(s)= \begin{cases}\rho_{1}, & 0<s<L_{1} \\ \rho_{2}, & L_{1}<s<L_{1}+L_{2}\end{cases}$

$$
\rho_{\mathrm{tr}}(s)=\left\{\begin{array}{l}
\rho_{1}, 0<s<L_{1} \\
\rho_{1}+\frac{\left(L_{1}-s\right)\left(\rho_{1}-\rho_{2}\right)}{L_{2}}, L_{1}<s<L_{1}+L_{2}
\end{array}\right.
$$

Step profile

The parameterization of the emittance reduction factor FTME with the bending radii ratio ρ and the lengths ratio λ, always for $\lambda>0.1$.

Fixing the dipole's characteristics (bending angle, length and minimum

 bending radius)

ψ_{d} — $\psi_{k_{\text {TME }}}$

$\mathrm{ML}^{\longrightarrow} \mathrm{F}_{\mathrm{TME}}$

Example: For 100 dipoles having a length of 0.58 m the absolute TME is 22 pm for the uniform profile and just 4pm for the trapezium profile.

Optimization of the arc TME cell

Aiming to reduce the DR's circumference, it is necessary to find the optimal phase advances for which:

- $\gamma \varepsilon_{x}<500 \mathrm{~nm}, \varepsilon_{l}<6 \mathrm{keVm}$
- adequate dynamic aperture (low chromaticities)
- quadrupole strengths $<100 \mathrm{~T} / \mathrm{m}$
- compact cell

$$
\frac{\epsilon_{v a r}}{\epsilon_{u n i}}=\frac{\epsilon_{r_{v a r}} \epsilon_{T M E_{v a r}}}{\epsilon_{r_{u n i}} \epsilon_{T M E_{u n i}}}=\frac{\epsilon_{r_{v a r}}}{\epsilon_{r_{u n i}}} \frac{1}{F_{T M E}}
$$

$$
\frac{\epsilon_{r_{v a r}}}{\epsilon_{r_{u n i}}}<F_{T M E}
$$

Summary Table

Fixing the dipoles" characteristics: bending radii ratio ρ and lengths ratio λ, dipole's length L and bending angle θ or else the total number of dipoles N_{d}

As long as the required output parameters are reserved, using the variable bends makes it possible to reduce the existing arcs' cells ($\mathrm{N}_{\mathrm{d}}=100$).

The optimal solutions are found to be $\mathrm{N}_{\mathrm{d}}=96$ for the step and $\mathrm{N}_{\mathrm{d}}=90$ for the trapezium profile.

Design parameters for the CLIC DRs for the original and the improved designs, for the 2 GHz .

Parameters, Symbol [Unit]	uniform	step	trapezium
Energy, E [GeV]		2.86	
Bunch population, $N\left[10^{9}\right]$		4.1	
Circumference, C [m]	427.5	374.1	359.4
Basic cell type in the arc/LSS		TME/FODO	
Number of arc cells/wigglers, N_{d} / N_{w}	100/52	96/40	90/40
Dipole field (max/min), $B_{0}[\mathrm{~T}]$	0.97/0.97	1.77/1.01	1.77/0.72
Normalized gradient in dipole [m^{-2}]		-1.1	
Quadrupole gradient strengths $k_{1}, k_{2}[\mathrm{~T} / \mathrm{m}]$	$(-34,67)$	$(-33,65)$	$(-33,65)$
Phase advance per arc cell [360 ${ }^{\circ} \mathrm{x} / \mathrm{y}$	0.408/0.05	0.426/0.05	0.425/0.05
Horizontal, vertical tune, $\left(Q_{x}, Q_{y}\right)$	$(48.35,10.40)$	$(47.39,9.45)$	$(44.15,9.23)$
Horizontal, vertical chromaticity, $\left(\xi_{x}, \xi_{y}\right)$	$(-113,-82)$	$(-135,-77)$	(-126,-72)
Wiggler peak field, $B_{w}[\mathrm{~T}]$	2.5	3.5	3.5
Wiggler length, L_{w} [m]		2	
Wiggler period, $\lambda_{w}[\mathrm{~cm}]$	5.0	5.0	4.9
Damping times, $\left(\tau_{x}, \tau_{y}, \tau_{l}\right)$ [ms]	(2.0, 2.0, 1.0)	$(1.2,1.3,0.6)$	$(1.2,1.2,0.6)$
Momentum compaction, $\alpha_{c}\left[10^{-4}\right]$	1.3	1.3	1.2
Energy loss/turn, U [MeV]	4.0	5.7	5.7
Normalized horizontal emit., $\gamma \epsilon_{x}$ [nm-rad]*	657	502	500
Normalized vertical emit., $\gamma \epsilon_{y}$ [nm-rad]	5.0	5.0	4.9
Energy spread (rms), $\sigma_{\delta}[\%]$	0.11	0.13	0.13
Bunch length (rms), $\sigma_{s}[\mathrm{~mm}]$	1.8	1.6	1.6
Longitudinal emittance, $\epsilon_{l}[\mathrm{keVm}]$	6.0	6.1	6.0
IBS factors hor./ver./long.	2.1/1.5/1.2	1.4/1.5/1.1	1.4/1.5/1.1
RF Voltage, $V_{R F}$ [MV]	4.2	6.1	6.0
RF Stationary phase [$\left.{ }^{\circ}\right]$	70.4	68.4	70.7
Harmonic number, h	2850	2496	2398

*Both lattices ${ }^{[5]}$ reach the target emittances including IBS, as calculated by the BjorkenMtingwa formalism through MADX. Only when using the Piwinski form., the original design ${ }^{[6]}$ (with the uniform dipoles) could reach the target horizontal emittance.

Thank you!

The parameterization of the emittance reduction factor FTME with the lengths ratio λ, the dipole length L and the number of dipoles used N_{d} for the step (left) and the trapezium (right) profile,

Parameterization of the focal lengths f_{1}, f_{2} with the detuning factor for (a) the step and (b) the trapezium profile. The black and magenta squares respectively indicate stability and feasibility-low chromaticities solutions.

Step profile

CLIC DRs	Step profile
Number of dipoles	96
Dipole length $[\mathrm{m}]$	0.58
Lengths ratio λ (difference between dipole parts with different field)	0.1
Bending radii ratio ρ (difference between min and max filed along the dipole)	0.57
maximum magnetic field [T]	1.77
minimum magnetic field $[T]$	1.009

The rotation angle for the entrance (e_{1}) and the exit (e_{2}) pole faces is 1.875°

Trapezium profile

CLIC DRs	Trapezium profile
Number of dipoles	90
Dipole length $[\mathrm{m}]$	0.58
Lengths ratio λ (difference between dipole parts with different field)	0.102
Bending radii ratio ρ (difference between min and max filed along the dipole)	0.404
maximum magnetic field[T]	1.77
minimum magnetic field[T]	0.715

The rotation angle for the entrance $\left(e_{1}\right)$ and the exit $\left(\mathrm{e}_{2}\right)$ pole faces is 2°

Optimization of the wiggler FODO cell

Results obtained after the optimizatio n of the arc TME cell.	When increasing the wigglers' peak field B_{w} up to a certain point, the emittance and the IBS effect are lowered (see F. Antoniou talk "Lattice Design of Intrabeam Scattering dominated LERs" ${ }^{[3]}$.	Based on the technological restrictions, a new working point for the damp. wiggler is proposed to be at 3.5T (prev. 2.5T), with 49 mm period length ${ }^{[4]}$	Removing some FODO cells from the existing straight section ($\mathrm{N}_{\text {FODO }}=13$ per section) is possible.

$\mathrm{N}_{\text {FODO }}=10$ per straight section

Parametrization of the steady state emittance and the IBS effect with the wiggler's peak field B_{w}

Optical functions of one TME cell, the dispersion suppressor-beta matching section and one FODO cell when using in the arcs the step (left) and the trapezium (right) profile.

The on momentum dynamic aperture of the DR for the step (right) and the trapezium (left) profile.

References

[1]
J. Guo and T. Raubenheimer, proc. of EPAC 2002, Paris (2002).
Y. Papaphilippou, P. Elleaume, PAC 2005, Knoxville (2005).
R. Nagaoka, A.F. Wrulich, Nucl. Instrum. Methods Phys. Res., Sect. A 575, 292 (2007).
C.-x Wang, PRST-AB 12, 061001 (2009).
C. -x Wang, Y. Wang, Y. Peng, PRST-AB 14, 034001 (2011).
[2] Y. Papaphilippou et al., '"Conceptual design of the CLIC damping rings'", TUPPCO86, proc. of IPAC'12, New Orleans, USA (2012).
[3] F. Antoniou, PhD thesis, NTUA, (2013)
D. Schoerling et al, PRST-AB 15, 042401 (2012).
[5] S. Papadopoulou, F. Antoniou and Y. Papaphilippou, Emittance reduction with variable bending magnet strengths: Analytical optics considerations, preprint (2015).
[6] F. Antoniou, PhD thesis, NTUA, (2013).

