Recent results from the neutrino mass experiment ECHo using the new detectors with ¹⁶³Ho implanted at ISOLDE

Gastaldo Loredana, Enss Christian, Fleischmann Andreas, Hassel Clemens, Hengstler Daniel, Hähnle Sebastian, Kempf Sebastian, Krantz Matthäus, Wegner Mathias

Dorrer Holger, Düllmann Christoph, Eberhardt Klaus, Kieck Tom, Schneider Fabian, Wendt Klaus

Köster Ulli

Türler Andreas

Marsh Bruce, Day Goodacre Tom, Johnston Karl, Rothe Sebastian, Stora Thierry, Veinhard Matthieu Riccio Charlotte, Jean-Luis Margueron, Thierry Zampieri, Michael Zampaolo, Fabrice Piquemal

EC

¹⁶³Ho and neutrino mass

 $^{163}_{67}\text{Ho} \rightarrow ^{163}_{66}\text{Dy}^* + v_e$

 $^{163}_{66}$ Dy* \rightarrow^{163}_{66} Dy+ E_{C}

- $\tau_{1/2} \cong$ 4570 years (2*10¹¹ atoms for 1 Bq)
- $Q_{\rm EC}$ = (2.555 ± 0.016) keV

M. Wang, G. Audi et al., Chinese Phys. C 36, 1603, (2012)

A non- zero neutrino mass affects the de-excitation energy spectrum

¹⁶³Ho $Q_{\rm EC}$ -value

 $^{163}_{67}\text{Ho} \rightarrow ^{163}_{66}\text{Dy}^* + \nu_e$

 $^{163}_{66}$ Dy* \rightarrow^{163}_{66} Dy + E_{C}

- $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)
- $Q_{\rm EC}$ = (2.555 ± 0.016) keV

M. Wang, G. Audi et al., Chinese Phys. C 36, 1603, (2012)

- Calorimetric measurements
- Measurements of x-rays

¹⁶³Ho $Q_{\rm EC}$ -value

 $^{163}_{67}\text{Ho} \rightarrow ^{163}_{66}\text{Dy}^* + v_e$

 $^{163}_{66}$ Dy* \rightarrow^{163}_{66} Dy+ E_{C}

- $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)
- $Q_{\rm EC}$ = (2.555 ± 0.016) keV

M. Wang, G. Audi et al., Chinese Phys. C 36, 1603, (2012)

- Calorimetric measurements
- Measurements of x-rays
 - Penning Trap Mass Spectroscopy

$Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

Direct measurement of the mass difference of ¹⁶³Ho and ¹⁶³Dy as prerequisite to a determination of the electron neutrino mass S. Eliseev et al., *Phys. Rev. Lett.*, 115, 062501 (2015)

¹⁶³Ho $Q_{\rm EC}$ -value

 $^{163}_{67}\text{Ho} \rightarrow ^{163}_{66}\text{Dy}^* + v_e$

 $^{163}_{66}$ Dy^{*} \rightarrow $^{163}_{66}$ Dy + E_{C}

- $\tau_{1/2} \cong$ 4570 years (2*10¹¹ atoms for 1 Bq)
- $Q_{\rm EC}$ = (2.555 ± 0.016) keV

M. Wang, G. Audi et al., Chinese Phys. C 36, 1603, (2012)

- Calorimetric measurements
- Measurements of x-rays
 - Penning Trap Mass Spectroscopy

$Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

Direct measurement of the mass difference of ¹⁶³Ho and ¹⁶³Dy as prerequisite to a determination of the electron neutrino mass S. Eliseev et al., *Phys. Rev. Lett.*, 115, 062501 (2015)

To reduce uncertainties in the analysis: Q_{EC} determination within 1 eV → PENTATRAP (MPIK HD)

¹⁶³Ho Q_{FC} -value

Requirements for sub-eV sensitivity in ECHo

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

Unresolved pile-up ($f_{pu} \sim a \cdot \tau_r$)

- $f_{\rm pu} < 10^{-5}$
- $\tau_r < 1 \,\mu s \rightarrow a \sim 10 \,\text{Bq}$
- 10⁵ pixels

Precision characterization of the endpoint region

• $\Delta E_{\text{FWHM}} < 3 \text{ eV}$

Background level

• 5*10⁻⁵ events/eV/det/day

Requirements for sub-eV sensitivity in ECHo

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

Unresolved pile-up ($f_{pu} \sim a \cdot \tau_r$)

- $f_{\rm pu} < 10^{-5}$
- $\tau_r < 1 \,\mu s \rightarrow a \sim 10 \,\text{Bq}$
- 10⁵ pixels

Precision characterization of the endpoint region

 $\Delta E_{\rm FWHM} < 3 \, {\rm eV}$

Background level

Low temperature Metallic Magnetic Calorimeter

MMCs: 1d-array for soft x-rays (T=20 mK)

MMCs: Microwave SQUID multiplexing

Microwave SQUID Multiplexer for the Readout of Metallic Magnetic Calorimeters S.Kempf et al., J. Low. Temp. Phys. **175** (2014) 850-860

First detector prototype for ¹⁶³Ho

- Absorber for calorimetric measurement

 → ion implantation @ ISOLDE-CERN in 2009
 on-line process
- About 0.01 Bq per pixel

Field and heater bondpads

Heatsink

SQUIDbondpads

• Operated over more than 4 years

0

L. Gastaldo et al., Nucl. Inst. Meth. A, 711 (2013) 150 P. C.-O. Ranitzsch et al., http://arxiv.org/abs/1409.0071v1 Meander

Calorimetric spectrum

- Rise Time ~ 130 ns
- $\Delta E_{\text{FWHM}} = 7.6 \text{ eV} @ 6 \text{ keV} (2013)$
- Non-Linearity < 1% @ 6keV
- Synchronized measurement of 2 pixels

Counts per 2.0 eV

1000	- NI	¹⁶³ Ho –					
800	-	-					
600	-						
400	_	First calorimetric measurement of the OI-line					
	0	MI					
200	- NII	¹⁴⁴ Pm MII					
0	0.0	0.5 1.0 1.5 2.0					
Energy E [keV]							
$Q_{\rm EC}$ = (2.843 ± 0.009 ^{stat} - 0.06 ^{syst}) keV							

P. C.-O. Ranitzsch et al ., http://arxiv.org/abs/1409.0071v1) L. Gastaldo et al., Nucl. Inst. Meth. A, 711, 150-159 (2013)

	E _H bind.	E _H exp.	$arGamma_{H}$ lit.	$arGamma_{H}$ ехр
MI	2.047	2.040	13.2	13.7
MII	1.845	1.836	6.0	7.2
NI	0.420	0.411	5.4	5.3
NII	0.340	0.333	5.3	8.0
ΟΙ	0.050	0.048	5.0	4.3

Where to improve

Background reduction ٠

Detector design and fabrication:

- Increase activity per pixel
- Stems between absorber and sensor ٠

Understanding of the ¹⁶³Ho spectrum:

¹⁴⁴Pm

¹⁶³Ho

MI

2.0

MII

¹⁴⁴Pm

15

10

Energy E [keV]

High purity ¹⁶³Ho source: (n, γ)-reaction on ¹⁶²Er

Requirement : $>10^6 \text{ Bq} \rightarrow >10^{17} \text{ atoms}$

- (n, γ)-reaction on ¹⁶²Er
 - High cross-section
 - Radioactive contaminants

¹⁶³Ho sample produced at ILL, Grenoble

ECHo requirements: ^{166m}Ho/¹⁶³Ho < 10⁻⁹

Offline mass separation: RISIKO, Mainz University ISOLDE-CERN

- Excellent chemical separation
 Only ^{166m}Ho
- Available ¹⁶³Ho source:

~ 10¹⁸ atoms

Detector chip for second ¹⁶³Ho implantation

- maXs-20: sandwich sensor design
 - absorber connected to sensor through stems
 - 16 pixels

- Chemically purified ¹⁶³Ho source
- Offline implantation @ISOLDE-CERN using GPS and RILIS (December 2014)

New detectors ready for ...

Mounted on a cold arm of a dry cryostat

Mounted on a cold arm of a dry cryostat

- Activity per pixel
- A ~ 0.1 Bq
- Baseline resolution
- $\Delta E_{\rm FWHM} \simeq 5 \, {\rm eV}$
- No strong evidence of radioactive contamination in the source

- Activity per pixel
 - A~0.1 Bq
- Baseline resolution
- $\Delta E_{\rm FWHM} \simeq 5 \, {\rm eV}$
- No strong evidence of radioactive contamination in the source

C. Hassel et al., submitted to JLTP (2015)

• Activity per pixel

- A ~ 0.1 Bq
- Baseline resolution
- $\Delta E_{\rm FWHM} \simeq 5 \, {\rm eV}$
- No strong evidence of radioactive contamination in the source
- Symmetric detector response

C. Hassel et al., submitted to JLTP (2015)

Characterisation of spectral shape

Characterisation of spectral shape

Conclusions and outlook

- High purity ¹⁶³Ho source has been produced
- ¹⁶³Ho ions have been successfully implanted in offline process @ISOLDE-CERN
- 32 new implanted detectors already show
 - Larger activity ~10⁻¹ Bq
 - Low background ~10⁻⁴ events/eV/det/day
 - Good energy resolution

new interesting results are coming!

Conclusions and outlook

- Prove scalability with medium large experiment ECHo-1K
 - A ~ 1000 Bq High purity ¹⁶³Ho source (produced at ILL)
 - $\Delta E_{\text{FWHM}} < 5 \text{ eV}$
 - τ_r< 1 μs
 - multiplexed arrays → microwave SQUID multiplexing
 - 1 year measuring time \rightarrow 10¹⁰ counts = Neutrino mass sensitivity $m_v < 10 \text{ eV}$

Supported by

ECHo-1M towards sub-eV sensitivity

Thank you!

Department of Nuclear Physics, Comenius University, Bratislava, Slovakia Fedor Simkovic Department of Physics, Indian Institute of Technology Roorkee, India Moumita Maiti Goethe Universität Frankfurt am Main Udo Kebschull, Panagiotis Neroutsos Institute for Nuclear Chemistry, Johannes Gutenberg University Mainz Christoph E. Düllmann, Klaus Eberhardt, Holger Dorrer, Fabian Schneider Institute of Nuclear Research of the Hungarian Academy of Sciences Zoltán Szúcs Institute of Nuclear and Particle Physics, TU Dresden, Germany Kai Zuber Institute for Physics, Humboldt-Universität zu Berlin Alejandro Saenz Institute for Physics, Johannes Gutenberg-Universität Klaus Wendt, Sven Junck, Tom Kieck Institute for Theoretical Physics, University of Tübingen, Germany Amand Fäßler Institut Laue-Langevin, Grenoble, France Ulli Köster **ISOLDE-CERN** Marsh Bruce, Day Goodacre Tom, Johnston Karl, Rothe Sebastian, Stora Thierry, Veinhard Matthieu **Kirchhoff-Institute for Physics, Heidelberg University, Germany** Christian Enss, Loredana Gastaldo, Andreas Fleischmann, Clemens Hassel, Sebastian Kempf, Mathias Wegner Max-Planck Institute for Nuclear Physics Heidelberg, Germany Klaus Blaum, Andreas Dörr, Sergey Eliseev, Mikhail Goncharov, Yuri N. Novikov, Alexander Rischka, Rima Schüssler **Petersburg Nuclear Physics Institute, Russia** Yuri Novikov, Pavel Filianin Physics Institute, University of Tübingen, Germany Josef Jochum, Stephan Scholl Saha Institute of Nuclear Physics, Kolkata, India Susanta Lahiri

