High-precision beta-decay studies to test the weak-interaction standard model

> Bertram Blank CEN Bordeaux-Gradignan

Université BORDEAUX

NBG

Germanium detector calibration

- experimental studies: $0^+ 0^+ \beta$ decay mirror β decay
- future work

ISOLDE workshop and users meeting, December 2-4, 2015

• • What can we learn?

$$V_{ud}^{2} = G_{v}^{2}/G_{\mu}^{2}$$

$$V_{ud}^{2} + V_{us}^{2} + V_{ub}^{2} = 1$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

Validate the correction terms

Test for presence of a Scalar current **7***t* values constant

FROM A SINGLE TRANSITION

Experimentally determine G_v^2

$$\mathcal{F}t = ft (1 + \delta_{R}') [1 - (\delta_{c} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

• • Nuclear beta decay

 $\checkmark \rho^2$

 $\rightarrow \beta$ -decay angular correlation studies

Germanium detector calibration

Super-allowed Fermi transitions for T_z = 0

close to 100% g.s. to g.s. transition

low precision needed for non-analog transitions

Super-allowed Fermi transitions for T_z = -1

- many decay channels open
- strong non-analog transitions
- high precision of γ efficiency needed \rightarrow 0.1%

• • Calibration of germanium detector

- $\Delta \varepsilon_{rel} = 0.1\%$, $\Delta \varepsilon_{abs} = 0.15\%$
- calibration programme of a HP Ge detector:
- x-ray photography of detector
- scan of the crystal at CSNSM
- source measurements
- MC simulations: CYLTRAN, GEANT4

Branching ratios:

²⁴Na, ²⁷Mg, ⁴⁸Cr, ⁵⁶Co, ⁶⁰Co, ⁶⁶Ga, ⁷⁵Se,
 ⁸⁸Y, ¹³³Ba, ¹³⁴Cs, ¹³⁷Ce, ¹⁵²Eu, ¹⁸⁰Hf, ²⁰⁷Bi
 Peak/total: ²²Na, ⁴¹Ar, ⁵¹Cr, ⁵⁴Mn, ⁵⁷Co, ⁵⁸Co,
 ⁶⁵Zn, ⁸⁵Sr ...ISOLDE sources

0⁺ - 0⁺ β decay: ³⁸Ca

Super-allowed Fermi transitions for T_z = -1

- many decay channels open
- strong non-analog transitions
- high precision of γ efficiency needed \rightarrow 0.1%

• • ³⁸Ca production at GANIL/LISE3

• • • ³⁸Ca: result

• half-life:

Recent ISOLDE experiment: ¹⁰C

• • • $0^+ \rightarrow 0^+$ decays: limits on exotic currents

- assumption: only vector current
- limit on scalar currents:

Severijns et al.

 $b_F = Re((C_s + C'_s) / C_v) = 0.0026(42)$ (90% CL)

improve on low-Z
nuclei

● ● 0⁺ → 0⁺ decays: ¹⁰C error budget

• • • ¹⁰C decay scheme

• • • Experimental setup

• • First steps of analysis

 1022 keV line from ¹⁹Ne (same T_{1/2}, same Q_{EC}): no 1022 keV peak, only 511-511 pile-up

• • First steps of analysis

1022 keV line from ¹⁰C:

> 1022 keV line + 511+511 pile-up

• First steps of analysis • 1022 keV line from ¹⁰C: 1022 keV line + 511+511 pile-up counts *10*⁴ 1010 1020 <u>990</u> 1000 1030 <u>980</u> energy (keV)

• • First steps of analysis

1022 keV line from ¹⁰C: different ways to analyse

- Fitting with a fixed shape for pile-up peak determined from ¹⁹Ne
- Calculate the number of pile-ups from
 - 511 keV singles peak
- Measurements with different shaping times
 - ➔ different pile-up probabilities
- Measurements at different distances
 - ➔ different pile-up probabilities
- > Other problem: at A=26 (CO) a lot of ${}^{13}N_2$

Mirror β decay: ²³Mg and ²⁷Si

• • Experiment JYFL2013: ²³Mg & ²⁷Si

• • • BR of ²³Mg

Literature value: (91.78±0.26)%

• • Half-life of ²³Mg

• • Half-life of ²³Mg

• • Half-life of ²⁷Si

Future plans at ISOLDE

• • • Conclusions

• High-precision Germanium detector is available

 \rightarrow Tz = -1 nuclei can be addressed: ¹⁸Ne, ²²Mg, ²⁶Si, ³⁰S, ⁴²Ti

• Big potential for nuclear mirror decays

need for high-precision GT-F mixing ratio measurements

- What about Tz = -2 nuclei? ³²Ar, ³⁶Ca...
- SPIRAL2/S3/DESIR: heaviest N=Z odd-odd nuclei

→CVC tests over much broader range

- β -v correlation measurements in a supra-conducting magnet
- Improve theoretical corrections....

Collaborations: CENBG, IGISOL, GANIL, IPNO, IPHC, TRIUMF

Comparison experiment - simulations

70% HP Germanium on precision test bench

• all source measurements at exactly 15 cm from entrance window \rightarrow \rightarrow position precision of better than 10 μ m

Calibration Procedure

- X-ray radiography
- γ-ray detector scans
- source measurements
- MC simulations

(GEANT4 or CYLTRAN)

 $\rightarrow \rightarrow$ develop a model of the detector

to calculate efficiencies at any energy

at a fixed distance of 15 cm

X-ray photography of detector

- → rough size of crystal
- → tilt of crystal with respect to detector housing of 1°
- → according to GEANT4 simulations no influence on results

Gamma-ray scan of detector

• AGATA scan table at CSNSM: strongly collaminated ¹³⁷Cs source

A. Korichi et al.

Longitudinal scan: 662 keV

- excellent full-energy peak spectrum
- good total-energy spectrum

Front scan: 662 keV

- effect of detector tilt clearly visible
- reasonable overall agreement

Perpendicular scan: 662 keV

- effect of detector tilt clearly visible
- reasonable overall agreement

Calibration sources

peak-to-total sources:

 \rightarrow close to « one single γ ray with 100% branching ratio »

standard sources:

```
<sup>57</sup>Co, <sup>51</sup>Cr, <sup>85</sup>Sr, <sup>137</sup>Cs, <sup>54</sup>Mn, <sup>60</sup>Co, <sup>22</sup>Na
```

short-lived online sources at ISOLDE:

⁵⁸Co, ⁶⁵Zn, ⁴¹Ar

relative efficiency sources:

→ a few well-known branches (BR error <1%) at largely different energies

standard sources:

⁶⁰Co, ⁸⁸Y, ¹³³Ba, ¹³⁴Cs, ¹³⁷Cs, ¹⁵²Eu, ²⁰⁷Bi

short-lived online sources at ISOLDE and IPN Orsay:

²⁴Na, ²⁷Mg, ⁴⁸Cr, ⁵⁶Co, ⁶⁶Ga, ⁷⁵Se, ^{180m}Hf

absolute efficiency:

- ⁶⁰Co with activity precision of 0.7‰
- γ–γ coincidences

• • Calibration of germanium detector: peak-to-total

• • Calibration of germanium detector: absolute efficiency

Calibration of germanium detector: absolute efficiency

ц Ш

Absolute efficiency calibration with y-y coincidences

Condition:

- γ - γ cascade with large BR
- no « cross-over » transition
- → ⁶⁰Co (et ²⁴Na)

- standard pile-up is same for all peaks
- but: necessity to correct pile-up between two events (1173₁ + 1332₂ et vice-versa)

• I1 = A0 *
$$\varepsilon_1$$
 * BR1 * (1.- ε_{t2} * w12(θ))

• I2 = A0 *
$$\varepsilon_2$$
 * BR2 * (1.- ε_{t1} * w12(θ))

• I12 = A0 *
$$\varepsilon_1$$
 * ε_2 * BR12 * w12(θ)

•
$$|12 = |12' - |12_{11} - |12_{22}$$

• $|12_{11} = |11 * \varepsilon_2 / \varepsilon_1 * BR2 / BR1$
• $|12_{22} = |22 * \varepsilon_1 / \varepsilon_2 * BR1 / BR2$

- ε_{t2}: from other measurements
 w12(θ): from calculations
 - three unknowns: A0, ϵ_1 , ϵ_2 • three equations

 $\rightarrow \rightarrow \epsilon_1, \epsilon_2$

• • Absolute efficiency with $\gamma - \gamma$ coincidences: ⁶⁰Co

• • ³⁸Ca detection

• • • $0^+ \rightarrow 0^+$ decays: status

- 14 nuclei measured with precision of order 10⁻³
- $V_{ud} = 0.97417 \pm 0.00021$, $\Sigma V_{ux} = 0.99978 \pm 0.00055$

• • • Half-lives of ²⁷Si

Future plans: GANIL – SPIRAL2 – S3 – DESIR

- $T_z = -1$, 0+ 0+ decays
- heavy 0+ 0+ decays

• • Super-allowed emitter production at GANIL/LISE3

- NFS and S3 experiments
- for DESIR:
 - SPIRAL1 (light nuclei from beam/target fragmentation)

• SPIRAL2 (n-rich fission fragments, transfer and fusion-evaporation products) at earliest 2020

S3 (fusion-evaporation, refractory elements)

• • Heavy $T_z = 0$ nuclei

T _z = 0	isotope	half-life (ms)	production rate (pps)
	⁶⁶ As	95.77(23)	50000
	⁷⁰ Br	79 .1(8)	35000
	⁷⁴ Rb	64.776(30)	30000
	⁷⁸ Y	54(5)	1500
	⁸² Nb	50(5)	300
	⁸⁶ Tc	55(6)	250
	⁹⁰ Rh	15(7)	200
	⁹⁴ Ag	37(18)	400
	⁹⁸ In	37(5)	0.3

➔ test CVC over a larger range of Z

• • • **PIPERADE** at **DESIR**

Double Penning trap for high-resolution separation at DESIR facility of SPIRAL2

Test set-up at CENBG Bordeaux

Requirements

- Purify large samples (>10⁴ ions)
- Mass resolution > 10⁵
- Fast separation methods

