CERN-MEDICIS An update

Thierry Stora, EN-STI

The Scope

- Biomedicine
- Innovative protocols (Surgery/brachytherapy/combination)
- Innovative isotopes for imaging and treatment

Field of Application	Radiation	Chemical elements	Half lives
PET	β+	Alkaline earth	10's min.
SPECT	γ	Halogen	Hours
TAT	α	Transition metals	Months
Beta therapy	β-		
Auger therapy	e⁻		

 Studies on cells, animals (« preclinical ») possibly extended to clinical phases (needs upgrades, but this can be reached)

Why CERN-MEDICIS could be done *?

* Without an additional proton driver

Irradiation station commissioned with beam

M. Vagnoni (EN-STI fellow), et al.

The building extension

Efzáícis

ENCINEERING

Temporary shielding removed And final shielding/access under way

The building extension

The nuclear ventilation

The Mass separator

LISOL dipole ready for shipment In Louvain La Neuve

Conceptual design – collection chamber (A. Brown)

Ion distribution at focal plane

Separator in CERN-MEDICIS Configuration (Y. Martinez)

The scientific case

Courtesy prof. Ratib, in the context of the CERN-MEDICIS project

Collaboration with JRC-ITU Intracavity injection +resection of Glioblastoma

Targeted alpha-radionuclide therapy of functionally critically located gliomas with ²¹³Bi-DOTA-[Thi⁸,Met(O₂)¹¹]-substance P: a pilot trial

A. Morgenstern · C. Apostolidis · S. Good · J. Müller-Brand • H. Mäcke • J. C. Reubi • A. Merlo JOINT RESEARCH CENTRE uropean The European Commission's in-house science service Commissio European Commission > JRC Science Hub > News & events > JRC News > CERN and the JRC to scale up production of alpha-emitters against cancer About us Research Knowledge Working with us News & events Our Institutes Our Communities 🖶 Print 🐼 Share 💦 RSS CERN and the JRC to scale up 23 News & events Related Topics 2015 production of alpha-emitters JRC News against cancer News highlights Medical applications of radionuclides and targeted Other news alpha therapy A novel, accelerator-driven Events method could produce nuclides Public health for targeted alpha therapy of **JRC Newsletter** cancer in practically unlimited Press centre JRC Institutes amounts, overcoming current obstacles for its wider use due to a limited production of alpha-ITU emitters. The JRC and the Conseil Européen pour la Recherche Nucléaire (CERN) Current radiotherapy against cancer have embarked to explore the mostly uses beta-emitters as medical potential of the jointly proposed isotopes method. © Alex Tihonov, Fotolia.com

12th SWISS EXPERIMENTAL SURGERY SYMPOSIUM

New Radio Isotopes for Diagnosis & Treatment

In Pre-clinical and Clinical Research

Organized by the HUG and the University of Geneva

With the participation of:

L. Buhler, Ph. Morel, B.H. Walpoth

Co-organized with CERN, CHUV, EPFL, ISREC

With the participation of:

D. Hanahan, J. Prior, O. Ratib, T. Stora

Friday, 15 January 2016 08h30 – 17h00

The method for production of

D. Cordier · F. Forrer · F. Bruchertseifer ·

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent to the ISOLDE and Neutron Time-of-Flight Committee

Radium and Francium beam tests to produce ²²⁵Ac/²¹³Bi generators at CERN-MEDICIS

14 October 2015

F. Bruchertseifer¹, A. Morgenstern¹, Y. Martinez^{2,3}, T. Cocolios², T. Stora³ and the CERN-MEDICIS collaboration

¹ JRC-ITU, Karlsruhe, Germany

² KULeuven, Leuven, Belgium

³ CERN-MEDICIS project, CERN, Switzerland

Outreach

1st yearly Grace-MEDICIS collaboration/public lecture took place on 15th October 2014

The 2nd one is in preparation: Prof. W. Weber, Memorial Sloan Kettering Cancer Center New York

Prof Doug Hanahan

Director ISREC Lausanne

AACR's Lifetime Achievement Award

Tentative planning

Phase	Action	Date
PHASE I	Commissioning: without beam $(*)$	2016
PHASE II	Commissioning with beam and light targets to gain operational experience	2017
PHASE II B	Isotope production with light targets	Mid 2017
PHASE III	Extending to heavy targets up to Tantalum	End 2017
PHASE IV	Collection of short lived alpha emitters (e.g. 149Tb)	2018
PHASE IV B	Operation with lasers	2018
PHASE V	Operation with uranium targets/possible proton beam upgrade	2019

* Preferable but may be hard to achieve

MEDICIS-PROMED

« MEDICIS-Produced radioisotope beams for medicine »

www.cern.ch/medicis-promed

The intersectorial distributed network

Overview of the Research Network

>7/15 young researchers have been hired : recruitment \rightarrow Dec 2015

		MEDICIS_PROMED tra	aining network					
	"Timely	Coordination Dr. T. S	Stora, CERN Medical coordination : PhD, ME	D J. Prior, CHUV				
1	nnovations" WP3 : therand	ostic pharmaceuticals/surger	y for new ovarian cancer personalized treat	ment				
Terbium iso	tope theranostic pairs	AAA (FR) lead- radiopha	AAA (FR) lead- radiopharmaceuticals - ESR6					
Biological tar	gets for ovarian cancers	IST (PT)/dna targetting - I	IST (PT)/dna targetting - ESR8					
		CERN MEDICIS (EU)/mole	ecular break-up - ESR1					
		HUG (CH)/surgery - ESRC	НЗ					
"Timely		CHUV(CH)/preclinical test	ts - ESRCH2	"Timely				
Innovations"	WP 1 : mass separation of	new medical isotopes	WP 2 : Pet aided 11C hadrontherapy	Innovations"				
Graphene	JOGU (DE) lead - laser purific	ation - ESR5	CNAO (IT) lead - 11C hadrontherapy - ESF	89				
CERN-MEDICIS	UNI MANCHESTER (UK)/adv n	naterial- ESR4	KUL (BE) - mass sep 11C - ESR11	Medaustron				
Ti:Sa Ion sources	CERN MEDICIS (EU)/ producti	on safety - ESR2	CERN MEDICIS (EU) - 11C acceler ESR3	animal models				
	Lemer-Pax (FR) /transport - ES	SR10	HUG (CH) - imaging tests -ESRCH1					
α -isot. Transp.	IST (PT)/nanofibers - ESR7		EPFL (CH) - biochemical synthesis - ESRCH4	4				
			Medaustron (AT) - hadrontherapy					
	MEDICIS-PRO	OMED: Innovative treatments	based on radioactive ion beam production,					
	Pure inpovat	transport and pr	reclinical studies New Personalize	ed				

CÉRN

Training : Events and models

Kick-off week – CERN (EU) 1st half feb 2016, and ICTR-PHE 2016

General training 1 – Manchester (UK) Workshop on functional multimodal SPECT/PET imaging – Lausanne/Geneva (CH) Specialized training 2 – Leuven (BE) Summer school 1 at CNAO – Pavia (IT). Summer school 2 at C2TN-IST – Lisbon (PT)

K. Novoselov, Graphene Institute – Physics Nobel Prize 2010 – Scientific Innovation and Advanced Materials

U. Koester, ILL- chairman of the NuPECC working group for *Nuclear Physics* for *Medicine-Radioisotope production*– Production of medical radioisotopes

P. Van Duppen, KUL – Adv ERC – Radioactive Ion Beams and Lasers

S. Buono, AAA – Radiopharmaceuticals marketing and Entrepreneurship

- G. Coukos, CHUV Adv. ERC Immunotherapy and cancer treatment
- P. Lecoq, CERN Adv ERC Detectors and Medical imaging
- K. Noda-san NIRS PET-aided hadron therapy with carbon ions

Program cohesion : Oxford University Said Business School (ECTS, PhD)

And many orthers

Thank you, questions, comments?

Some yield estimates

		Parent isotope beam	Target - Ion source	ISOLDE [†]		RIB	CERN-MEDICIS [†]		CERN-MEDICIS 2GeV 6μA			
Medical pplication	Isotope			In-target			In target	Extracted	Possible	In-target		
	half- life			Production rate (pps)	ActivityEOB (Bq)	Eext** (%)	ActivityEOB (Bq)	Activity EOB (Bq)	gain Eext (%)	Activity EOB/ Extracted Activity EOB (Bq)		Comments
3- therapy/ CT/dosimetry	²¹³ Bi 45.6m	²²⁵ Ac	UCX-Re	1.5E9*	7.2E8	²²¹ Fr 10	2.8E8	2.8E7	50	8.4E8	4.2E8	Only mass separation
,β therapy	²¹² Bi 60.6m	²²⁴ Ac	UCX-Re	1.5E9*	1.4E9	²²⁰ Fr 10	1.7E9	1.7E8	50	5.1E9	2.5E9	Only mass separation
β therapy	¹⁷⁷ Lu 6.7d	¹⁷⁷ Lu RILIS/VD	Ta-Re/ Re-VD5	3.3E9	7.4E8	¹⁷⁷ Lи 1	6.4E8	6.4E6	20	8.3E8	1.7E8	Chemical purification
ger therapy	¹⁶⁶ Yb 56.7h	¹⁶⁶ Yb	Ta-Re	1.4E10	5.4E10	¹⁶⁶ Yb 5	4.1E10	2.1E9	20	5.4E10	1.1E10	Chemical purification
β therapy	¹⁶⁶ Ho 25.8h	¹⁶⁶ Ho	Ta-Re	1.4E7	1.2E7	¹⁶⁶ Но 5	9.6E6	4.8E5	20	2.9E7	6.0E6	Chemical purification
uger therapy	¹⁶¹ Tb 6.9d	¹⁶¹ Tb	UCX-Re	2.1E7	2.7E7	¹⁶¹ Tb 5	1.9E7	9.5E5	20	2.7E7	5.4E6	Chemical purification
3- therapy	¹⁵⁶ Tb 5.35d	¹⁵⁶ Tb	Ta-Re	2.5E8	8.9E7	¹⁵⁶ Tb 1	5.5E7	5.5E5	20	6.3E7	1.3E7	Chemical purification
SPECT	¹⁵⁵ Tb 5.33d	¹⁵⁵ Dy/ Tb	Ta-Re	3.2E9/ 7.4E8	7.9E9	¹⁵⁵ Dy 1	5.3E9	5.3E7	20	3.4E9	6.8E8	RILIS Dy
3 therapy	¹⁵³ Sm 46.8h	¹⁵³ Sm	UCX-Re	1.5E8	2.2E9	¹⁵³ Sm 5	2.8E9	1.4E8	20	5.2E9	1.0E9	Chemical purification
PET/CT	¹⁵² Tb 17.5h	¹⁵² Dy/ Tb	Ta-Re	1.3E10/ 3.3E9	5.6E10	¹⁵² Dy 1	3.7E10	3.7E8	20	1.1E11	2.2E10	RILIS Dy
9 therapy	149Tb	149;C	🌠 a-Re	1.1E10	6.0E10	149 _{Tb} S1	ora EN-STI 3.8E10	- Isolde v 3.8E8	vorkshoj 20	o 2015 1.2E11	2.4E10	Chemical purification

⁴⁰ Pr-PET/ ger therapy	¹⁴⁰ Nd 3.4d	¹⁴⁰ Nd	Ta-Re	1.8E9	2.0E10	¹⁴⁰ Nd 5	1.2E10	6.0E8	20	2.0E10	4.0E9	Chemical purification
- therapy	⁸⁹ Sr 50.5d	⁸⁹ Sr	UCX-Re	1.2E10	2.3E9	⁸⁹ Sr 5	2.0E9	1.0E8	20	2.7E9	5.4E8	Only mass searation
PET	⁸² Sr 25.5d	⁸² Sr	UCX-Re	3.6E10	4.6E9	⁸² Sr 5	1.7E9	8.5E7	20	2.0E9	4.0E8	Only mass separation
- therapy	⁷⁷ As 38.8h	⁷⁷ As	UCx- VD5	5.7E9	1.1E10	⁷⁷ As 5	5.8E9	2.9E8	20	9.4E9	1.4E9	Chemical purification
PET	⁷⁴ As 17.8d	⁷⁴ As	Y ₂ O ₃ -VD5	6.5E9	1.2E9	⁷⁴ As 5	3.8E8	1.9E7	20	4.5E8	9.0E7	Chemical purif
PET	⁷² As 26.0d	⁷² As	Y ₂ O ₃ -VD5	1.6E10	2.8E10	⁷² As 5	9.1E9	4.6E8	20	1.5E10	3.0E9	Chemical purification
PET	⁷¹ As 65.3h	⁷¹ As	Y ₂ O ₃ -VD5	1.8E10	1.8E10	⁷¹ As 5	5.9E9	3.0E8	20	8.0E9	1.6E9	Chemical purification
3 therapy	⁶⁷ Cu 61.9h	⁶⁷ Cu	UCX-Re	2.7E9	3.4E9	⁶⁷ Cu 7	1.5E9	1.1E8	20	2.7E9	5.4E8	Chemical purification
PET	⁶⁴ Cu 12.7h	⁶⁴ Cu	Y ₂ O ₃ -VD5	1.1E10	2.3E10	⁶⁴ Cu 5	7.1E9	3.6E8	20	2.1E10	3.6E9	Chemical purification
, dosimetry	⁶¹ Cu 3.3h	⁶¹ Cu	Y ₂ O ₃ -VD5	7.7E9	1.7E10	⁶¹ Cu 5	5.1E9	2.6E8	20	2.1E10	4.0E9	Only mass separation
3 therapy	⁴⁷ Sc 3.4d	⁴⁷ Sc	Ti	6.4E10	5.0E10	⁴⁷ Sc 5	4.2E10	2.1E9	20	5.9E10	1.2E10	Evaporation
PET	⁴⁴ Sc 4.0h	^{44}Sc	Ti	4.4E10	6.6E10	⁴⁴ Sc 6.4	5.7E10	2.9E9	20	1.6E11	3.2E10	Evaporation
PET	¹¹ C 20.3m	¹¹ CO	NaF-LiF- VD5 [◊]	-	-	- 15	-	1.4E9	-	-	4.2E9	Only mass separation

