

Loop-induced and rare processes @ 100 TeV

Olivier Mattelaer IPPP/Durham

in collaboration with P. Torrielli and V. Hirschi based on 1407.1623 1507.00020

PLAN

- rare processes
 - enhancement from 8 TeV to 100 TeV
 - cross-sections @100TeV
- loop-induced processes
 - method and validation
 - cross-sections @100TeV
 - examples

Motivation

- Important to have the cross-section for a large sample of (SM) processes
 - allow to decide which one can be study
 - important for BSM searches
- We have the tools (@NLO)

Framework

Higgs

	Process	$\sigma_{\rm NLO}(8 {\rm ~TeV}) {\rm [fb]}$	$\sigma_{\rm NLO}(100 {\rm ~TeV}) {\rm [fb]}$	ρ
$pp \rightarrow$	$H\left(m_t,m_b ight)$	$1.44 \cdot 10^4 \ {}^{+20\%}_{-16\%} \ {}^{+1\%}_{-2\%}$	$5.46 \cdot 10^{5} \begin{array}{c} +28\% \\ -27\% \end{array} \begin{array}{c} +2\% \\ -2\% \end{array}$	38
$pp \rightarrow$	Hjj (VBF)	$1.61 \cdot 10^3 {}^{+1\%}_{-0\%} {}^{+2\%}_{-2\%}$	$7.40 \cdot 10^4 \begin{array}{c} +3\% \\ -2\% \\ -2\% \end{array} \right -1\%$	46
$pp \rightarrow$	$Htar{t}$	$1.21 \cdot 10^2 {}^{+5\%}_{-9\%} {}^{+3\%}_{-3\%}$	$3.25 \cdot 10^4 {}^{+7\%}_{-8\%} {}^{+1\%}_{-1\%}$	269
$pp \rightarrow$	$Hb\bar{b}$ (4FS)	$2.37 \cdot 10^2 {}^{+9\%}_{-9\%} {}^{+2\%}_{-2\%}$	$1.21 \cdot 10^4 \begin{array}{c} +2\% \\ -10\% \end{array} \begin{array}{c} +2\% \\ -2\% \end{array}$	51
$pp \rightarrow$	Htj	$2.07 \cdot 10^{1} {}^{+2\%}_{-1\%} {}^{+2\%}_{-2\%}$	$5.21 \cdot 10^3 \begin{array}{c} +3\% \\ -5\% \end{array} \begin{array}{c} +1\% \\ -1\% \end{array}$	252
$pp \rightarrow$	HW^{\pm}	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1.54 \cdot 10^4 \ {}^{+5\%}_{-8\%} \ {}^{+2\%}_{-2\%}$	21
$pp \rightarrow$	HZ	$3.87 \cdot 10^2 {}^{+2\%}_{-1\%} {}^{+2\%}_{-2\%}$	$8.82 \cdot 10^3 {}^{+4\%}_{-8\%} {}^{+2\%}_{-2\%}$	23
$pp \rightarrow$	HW^+W^- (4FS)	$4.62 \cdot 10^{0} {}^{+3\%}_{-2\%} {}^{+2\%}_{-2\%}$	$1.68 \cdot 10^2 {}^{+5\%}_{-6\%} {}^{+2\%}_{-1\%}$	36
$pp \rightarrow$	HZW^{\pm}	$2.17 \cdot 10^{0} {}^{+4\%}_{-4\%} {}^{+2\%}_{-2\%}$	$9.94 \cdot 10^{1} \begin{array}{c} +6\% \\ -7\% \end{array} \begin{array}{c} +2\% \\ -7\% \end{array}$	46
$pp \rightarrow$	$HW^{\pm}\gamma$	$2.36 \cdot 10^{0} {}^{+3\%}_{-3\%} {}^{+2\%}_{-2\%}$	$7.75 \cdot 10^{1} \begin{array}{c} +7\% \\ -8\% \end{array} \begin{array}{c} +2\% \\ -1\% \end{array}$	33
$pp \rightarrow$	$HZ\gamma$	$1.54 \cdot 10^{0} {}^{+3\%}_{-2\%} {}^{+2\%}_{-2\%}$	$4.29 \cdot 10^{1} \begin{array}{c} +5\% \\ -7\% \end{array} \begin{array}{c} +2\% \\ -2\% \end{array}$	28
$pp \rightarrow$	HZZ	$1.10 \cdot 10^{0} {}^{+2\%}_{-2\%} {}^{+2\%}_{-2\%}$	$4.20 \cdot 10^{1} {}^{+4\%}_{-6\%} {}^{+2\%}_{-1\%}$	38
$pp \rightarrow$	$HW^{\pm}j$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1.07 \cdot 10^4 \begin{array}{c} +2\% \\ -7\% \end{array} \begin{array}{c} +2\% \\ -7\% \end{array}$	34
$pp \rightarrow$	$HW^{\pm}jj$	$\left \begin{array}{ccc} 6.06 \cdot 10^1 \begin{array}{c} +6\% \\ -8\% \end{array} \begin{array}{c} +1\% \\ -8\% \end{array}\right.$	$4.90 \cdot 10^3 {}^{+2\%}_{-6\%} {}^{+1\%}_{-1\%}$	81
$pp \rightarrow$	HZj	$\left \begin{array}{ccc} 1.71 \cdot 10^2 & {}^{+4\%}_{-4\%} & {}^{+1\%}_{-1\%} \\ \right. \right.$	$6.31 \cdot 10^3 \begin{array}{c} +2\% \\ -7\% \end{array} \begin{array}{c} +2\% \\ -7\% \end{array}$	37
$pp \rightarrow$	HZjj	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$2.81 \cdot 10^3 \begin{array}{c} +2\% \\ -5\% \end{array} \begin{array}{c} +1\% \\ -5\% \end{array}$	80

Multi Bosons

Mattelaer Olívíer

QCD, EW and tools at 100 TeV

チ

Multi Bosons

	Process	$\sigma_{\rm NLO}(8 {\rm ~TeV}) {\rm [fb]}$	$\sigma_{\rm NLO}(100 {\rm ~TeV}) {\rm [fb]}$	ρ
$pp \rightarrow$	$W^+W^-W^\pm$ (4FS)	$8.73 \cdot 10^{1} \begin{array}{c} +6\% \\ -4\% \\ -2\% \end{array}$	$4.25 \cdot 10^3 \begin{array}{c} +9\% \\ -9\% \\ -1\% \end{array}$	49
$pp \rightarrow$	W^+W^-Z (4FS)	$6.41 \cdot 10^{1} \begin{array}{c} +7\% \\ -5\% \end{array} \begin{array}{c} +2\% \\ -2\% \end{array}$	$4.01 \cdot 10^3 \begin{array}{c} +9\% \\ -9\% \\ -1\% \end{array}$	63
$pp \rightarrow$	$\gamma W^{\pm} Z$	$7.11\cdot 10^1 \ {}^{+8\%}_{-7\%} \ {}^{+2\%}_{-1\%}$	$3.61 \cdot 10^3 \begin{array}{c} +12\% \\ -12\% \\ -1\% \end{array}$	51
$pp \rightarrow$	$W^{\pm}ZZ$	$2.16 \cdot 10^{1} \begin{array}{c} +7\% \\ -6\% \end{array} \begin{array}{c} +2\% \\ -2\% \end{array}$	$1.36 \cdot 10^3 \begin{array}{c} +10\% \\ -10\% \\ -1\% \end{array} \right $	63
$pp \rightarrow$	$\gamma Z Z$	$2.24 \cdot 10^{1} \begin{array}{c} +4\% \\ -3\% \end{array} \begin{array}{c} +2\% \\ -2\% \end{array}$	$6.62 \cdot 10^2 \begin{array}{c} +8\% \\ -9\% \\ -1\% \end{array}$	30
$pp \rightarrow$	ZZZ	$5.97 \cdot 10^{0} \begin{array}{c} +3\% \\ -3\% \end{array} \begin{array}{c} +2\% \\ -2\% \end{array}$	$2.55 \cdot 10^2 \begin{array}{c} +5\% \\ -7\% \\ -1\% \end{array}$	43
$pp \rightarrow$	$W^+W^-W^\pm\gamma$ (4FS)	$6.78 \cdot 10^{-1} \begin{array}{c} +8\% \\ -6\% \end{array} \begin{array}{c} +2\% \\ -2\% \end{array}$	$7.42 \cdot 10^{1} \begin{array}{c} +8\% \\ -8\% \\ -1\% \end{array}$	109
$pp \rightarrow$	$W^+W^-W^\pm Z$ (4FS)	$3.48 \cdot 10^{-1} {}^{+8\%}_{-7\%} {}^{+2\%}_{-2\%}$	$5.95 \cdot 10^{1} \begin{array}{c} +7\% \\ -7\% \\ -1\% \end{array}$	171
$pp \rightarrow$	$W^+W^-W^+W^- (4FS)$	$3.01 \cdot 10^{-1} {}^{+7\%}_{-6\%} {}^{+2\%}_{-2\%}$	$4.11 \cdot 10^{1} \begin{array}{c} +7\% \\ -6\% \end{array} \begin{array}{c} +1\% \\ -1\% \end{array}$	137
$pp \rightarrow$	W^+W^-ZZ (4FS)	$2.01 \cdot 10^{-1} {}^{+7\%}_{-6\%} {}^{+2\%}_{-2\%}$	$3.34 \cdot 10^{1} \begin{array}{c} +6\% \\ -6\% \\ -1\% \end{array}$	166
$pp \rightarrow$	$W^{\pm}ZZZ$	$3.40 \cdot 10^{-2} {}^{+10\%}_{-8\%} {}^{+2\%}_{-2\%}$	$7.06 \cdot 10^{0} \begin{array}{c} +8\% \\ -7\% \\ -1\% \end{array}$	208
$pp \rightarrow$	ZZZZ	$8.72 \cdot 10^{-3} {}^{+4\%}_{-4\%} {}^{+3\%}_{-2\%}$	$8.05 \cdot 10^{-1} \begin{array}{c} +4\% \\ -4\% \\ -4\% \\ -1\% \end{array} \right $	92
$pp \rightarrow$	$W^+W^-W^+W^-\gamma$ (4FS)	$5.18 \cdot 10^{-3} {}^{+8\%}_{-7\%} {}^{+3\%}_{-2\%}$	$1.58 \cdot 10^{0} \begin{array}{c} +6\% \\ -5\% \end{array} \begin{array}{c} +1\% \\ -5\% \end{array}$	305
$pp \rightarrow$	ZZZZZ	$1.07 \cdot 10^{-5} {}^{+5\%}_{-4\%} {}^{+3\%}_{-2\%}$	$2.04 \cdot 10^{-3} {}^{+3\%}_{-3\%} {}^{+2\%}_{-1\%} $	191

> 1pb > 1fb

>1 ab

top pair production

Mattelaer Olívíer

QCD, EW and tools at 100 TeV

Durham University

top pair production

	Process	$\sigma_{\rm NLO}(8 {\rm ~TeV}) {\rm [fb]}$	$\sigma_{\rm NLO}(100 {\rm ~TeV}) {\rm [fb]}$	ρ
$pp \rightarrow$	$t \overline{t} \gamma$	$\left \begin{array}{cccc} 6.50 \cdot 10^2 & {}^{+12\%}_{-13\%} & {}^{+2\%}_{-2\%} \\ \end{array}\right $	$1.24 \cdot 10^{5} {}^{+11\%}_{-11\%} {}^{+1\%}_{-1\%}$	192
$pp \rightarrow$	$t\bar{t}Z$	$1.99 \cdot 10^2 \ {}^{+10\%}_{-12\%} \ {}^{+3\%}_{-3\%}$	$5.63 \cdot 10^4 \ {}^{+9\%}_{-10\%} \ {}^{+1\%}_{-1\%}$	282
$pp \rightarrow$	$t\bar{t}W^{\pm}$	$2.05 \cdot 10^2 {}^{+9\%}_{-10\%} {}^{+2\%}_{-2\%}$	$1.68 \cdot 10^4 \ ^{+18\%}_{-16\%} \ ^{+1\%}_{-1\%}$	82
$pp \rightarrow$	$t \overline{t} \gamma j$	$1.22 \cdot 10^2 {}^{+17\%}_{-18\%} {}^{+3\%}_{-3\%}$	$6.07 \cdot 10^4 \ {}^{+8\%}_{-10\%} \ {}^{+1\%}_{-1\%}$	498
$pp \rightarrow$	$t\bar{t}Zj$	$3.51 \cdot 10^{1} \begin{array}{c} +15\% \\ -18\% \end{array} \begin{array}{c} +4\% \\ -4\% \end{array}$	$2.77 \cdot 10^4 \ {}^{+7\%}_{-9\%} \ {}^{+1\%}_{-1\%}$	789
$pp \rightarrow$	$t\bar{t}W^{\pm}j$	$3.59 \cdot 10^{1} \begin{array}{c} +18\% \\ -18\% \\ -2\% \end{array}$	$1.36 \cdot 10^4 \ {}^{+14\%}_{-13\%} \ {}^{+1\%}_{-1\%}$	379
$pp \rightarrow$	$t\bar{t}W^{\pm}jj$	$5.67 \cdot 10^{0} \begin{array}{c} +24\% \\ -23\% \end{array} \begin{array}{c} +3\% \\ -2\% \end{array}$	$6.52 \cdot 10^3 \begin{array}{c} +11\% \\ -14\% \end{array} \begin{array}{c} +1\% \\ -1\% \end{array}$	1150
$pp \rightarrow$	$t\bar{t}W^+W^-$ (4FS)	$2.27 \cdot 10^{0} {}^{+11\%}_{-13\%} {}^{+3\%}_{-3\%}$	$1.10 \cdot 10^3 \begin{array}{c} +9\% \\ -9\% \end{array} \begin{array}{c} +1\% \\ -9\% \end{array}$	486
$pp \rightarrow$	$tar{t}\gamma\gamma$	$2.23 \cdot 10^{0} {}^{+14\%}_{-13\%} {}^{+2\%}_{-1\%}$	$4.81 \cdot 10^2 \ ^{+13\%}_{-11\%} \ ^{+1\%}_{-1\%}$	216
$pp \rightarrow$	$t\bar{t}Z\gamma$	$\left \begin{array}{c} 1.11 \cdot 10^{0} \begin{array}{c} +12\% \\ -13\% \end{array} \right $	$4.20 \cdot 10^2 \begin{array}{r} +10\% \\ -9\% \\ -1\% \end{array}$	378
$pp \rightarrow$	$t\bar{t}W^{\pm}Z$	$9.71 \cdot 10^{-1} {}^{+10\%}_{-11\%} {}^{+3\%}_{-2\%}$	$1.68 \cdot 10^2 \begin{array}{r} +16\% \\ -13\% \\ -1\% \end{array}$	173
$pp \rightarrow$	$t\bar{t}ZZ$	$4.47 \cdot 10^{-1} {}^{+8\%}_{-10\%} {}^{+3\%}_{-2\%}$	$1.58 \cdot 10^2 \begin{array}{c} +15\% \\ -12\% \end{array} \begin{array}{c} +1\% \\ -1\% \end{array}$	353

> 1pb > 1fb > 1 ab

- loop-induced processes
 - method and validation
 - cross-sections @100TeV
 - ➡ examples

Loop Induced

Why?

- main production mechanism for Higgs & Higgs associated processes
- contribution for NNLO computation
- correction to shape of observables

Difficulties?

- the phase-space integration is based on the born diagram
- loop evaluation are extremely slow
- need Leading Color information for writing Events associated to the loop

Exact Integration

Difficulties?

- the phase-space integration is based on the born diagram
- loop evaluation are extremely slow
- need Leading Color information for writing Events associated to the loop

Our Solution

- contract the loop to have tree-level diagrams which drive the integration multichannel
- use Monte-Carlo over helicity
- compute the loop with the color flow algebra
- increase parallelisation

Validation p p > h j

Validation p p > h j

Loop	Indu	ced Process	$\sigma_{\rm NLO}(8 { m TeV})$	V) [fb]	$\sigma_{\rm NLO}(100$	TeV) [fb]	ρ
gg	\rightarrow	Н	$6.85 \cdot 10^{+3}$	$+33\% +1\% \\ -24\% -1\%$	$2.21 \cdot 10^{+5}$	+58% +1% -39% -1%	32
pp	\rightarrow	Hjj	$1.89 \cdot 10^{+3}$	$+67\% +1\% \\ -37\% -1\%$	$2.02 \cdot 10^{+5}$	$+66\% +0\% \\ -38\% -1\%$	107
gg	\rightarrow	HZ	22.9	$+33\% +1\% \\ -23\% -2\%$	$2.50 \cdot 10^{+3}$	+35% +1% -26% -1%	109
gg	\rightarrow	HW^+W^-	$8.28 \cdot 10^{-2}$	$+38\% -13\% \\ -26\% -16\%$	16.8	$+31\% +8\% \\ -23\% +6\%$	203
gg	\rightarrow	$HZ\gamma$	$2.12 \cdot 10^{-3}$	$+34\% +1\% \\ -23\% -2\%$	0.279	$+33\% +0\% \\ -25\% -1\%$	132
gg	\rightarrow	HH	5.46	$+34\% +2\% \\ -24\% -2\%$	$7.74 \cdot 10^{+2}$	$+32\% +0\% \\ -24\% -1\%$	142
gg	\rightarrow	ZZ	$4.93 \cdot 10^{+2}$	$+30\% +1\% \\ -21\% -1\%$	$2.92 \cdot 10^{+4}$	+42% +1% -30% -1%	59
gg	\rightarrow	$Z\gamma$	$3.98\cdot10^{+2}$	$+29\% +1\% \\ -21\% -1\%$	$1.70 \cdot 10^{+4}$	$+52\% +1\% \\ -35\% -1\%$	43
gg	\rightarrow	$\gamma\gamma$	$2.54\cdot10^{+4}$	$+56\% +1\% \\ -37\% -1\%$	$4.59 \cdot 10^{+5}$	+89% +3% -50% -3%	18
gg	\rightarrow	W^+W^-	$1.37 \cdot 10^{+3}$	$+32\% -8\% \\ -23\% -10\%$	$8.06 \cdot 10^{+4}$	+48% +31% -33% +29%	59
gg	\rightarrow	HZZ	$3.56 \cdot 10^{-2}$	$+35\% +2\% \\ -24\% -2\%$	7.29	$+28\% +0\% \\ -22\% -1\%$	205
gg	\rightarrow	$H\gamma\gamma$	$2.23 \cdot 10^{-3}$	$+38\% -13\% \\ -26\% -16\%$	0.374	$+33\% +10\% \\ -25\% +9\%$	167
gg	\rightarrow	W^+W^-Z	2.82	$+38\% -13\% \\ -26\% -16\%$	$4.72 \cdot 10^{+2}$	2 -100% +0% -100% +0%	167
gg	\rightarrow	$Z\gamma\gamma$	$5.58 \cdot 10^{-2}$	$+28\% +1\% \\ -21\% -1\%$	3.42	$+44\% +1\% \\ -31\% -1\%$	61
gg	\rightarrow	γZZ	$1.13 \cdot 10^{-3}$	$+33\% +1\% \\ -23\% -2\%$	0.13	$+34\% +1\% \\ -25\% -1\%$	115
gg	\rightarrow	HHH	$1.16 \cdot 10^{-2}$	$+39\% -14\% \\ -26\% -17\%$	2.99	+29% +5% -22% +4%	258
gg	\rightarrow	HHHH	$2.63 \cdot 10^{-5}$	$+39\% +3\% \\ -26\% -3\%$	$1.30 \cdot 10^{-2}$	2 + 23% + 1% -18% -1%	494
gg	\rightarrow	HHZ	$1.60 \cdot 10^{-2}$	$+36\% +2\% \\ -24\% -2\%$	3.35	+29% +0% -22% -1%	209

> 1pb > 1fb > 1 ab

gg > w+w-

triple Higgs

Conclusion

