b jets at 100 TeV

M.V. Garzelli, S.-O. Moch

II Institute for Theoretical Physics, University of Hamburg, Germany

PRELIMINARY RESULTS for DISCUSSION for the REPORT

FCC Workshop - QCD, EW and tools at 100 TeV CERN, October 7 - 9 th, 2015 $\sigma_{TOT}(pp \rightarrow X)$ as a function of (\sqrt{s}) for different processes

figure from K. Desch, 2015

 $\sigma_{b\bar{b}}$ more than 1000 larger than σ_W over the whole \sqrt{s} range [7 TeV, 100 TeV].

Some motivations for studying B-hadrons and b-jets at 100 TeV

* Due to the enormous cross-section, b + X and $b\overline{b} + X$ hadroproduction at 100 TeV allows for precise tests of QCD.

* This allows to study rare decays of *B*-mesons and baryons, providing stringent tests on the Standard Model.

* *b*-jets are important background for SM *H*, *Z* production and decay in $b\bar{b}$ (so far the direct experimental observation of Higgs decay to $b\bar{b}$ with high statistical significance is still missing).

* *b*-jets are a background for BSM searches (e.g. $\chi\chi \rightarrow b\bar{b}$)

* Production of heavy-quarks at ultra high-energies plays a role in astroparticle physics.

High-energy cosmic ray spectrum

* present uncertainties on the galactic-to-extragalactic transition and the CR composition at UHE could be (at least partially) addressed by reducing our theoretical uncertainties on hadroproduction at 100 TeV.

Heavy-quark hadroproduction: relative importance of different species

At the present run of LHC, expected cross-sections amount to:

 $\sigma(pp \rightarrow t\bar{t}, m_t^{pole} = 172.5 \text{ GeV}) \sim 716 \text{ pb} \text{ at } E_{CM} = 13 \text{ TeV}$ $\sigma(pp \rightarrow b\bar{b}, m_b^{\bar{M}\bar{S}}(m_b) = 4.2 \text{ GeV}) \sim 628.4 \ \mu\text{b} \text{ at } E_{CM} = 13 \text{ TeV}$ $\sigma(pp \rightarrow c\bar{c}, m_c^{\bar{M}\bar{S}}(m_c) = 1.27 \text{ GeV})) \sim 13.4 \text{ mb} \text{ at } E_{CM} = 13 \text{ TeV}$ $\sigma(c\bar{c}) = 21.3 * \sigma(b\bar{b}) = 21.3 * 877.7 * \sigma(t\bar{t})$

We try to cover a more extended energy range with respect to LHC.....

however the ratio between the heavy-quark cross-sections above is expected to decrease relatively slowly.... (in absence of new physics):

$$\sigma(pp \to t\bar{t}, m_t^{pole} = 172.5 \text{ GeV}) \sim 33624.6 \text{ pb} \text{ at } E_{CM} = 100 \text{ TeV}$$

$$\sigma(pp \to b\bar{b}, m_b^{\bar{M}\bar{S}}(m_b) = 4.2 \text{ GeV}) \sim 3374.5 \ \mu\text{b} \text{ at } E_{CM} = 100 \text{ TeV}$$

$$\sigma(pp \to c\bar{c}, m_c^{\bar{M}\bar{S}}(m_c) = 1.27 \text{ GeV}) \sim 38.2 \text{ mb} \text{ at } E_{CM} = 100 \text{ TeV}$$

$$\sigma(c\bar{c}) = 11.3 * \sigma(b\bar{b}) = 11.3 * 100.3 * \sigma(t\bar{t})$$

メロトメ母 トメヨト ヨー めんの

$\sigma(pp \rightarrow b\bar{b})$: scale dependence at 14 TeV

- * Perturbative convergence in running mass scheme is reached slightly faster than in pole mass scheme.
- * Minimal sensitivity to radiative corrections is reached at a scale $\mu_R \sim \mu_F \sim 2m_{bottom} ~.$
- * This translates into a dynamical scale $\sqrt{p_{T,charm}^2 + 4m_{bottom}^2}$ to better catch dynamics in differential distributions.

$\sigma(pp \rightarrow b\bar{b})$: scale dependence at 100 TeV

- * Perturbative convergence slightly worse than in the case of 14 TeV.
- * Minimal sensitivity to radiative corrections is reached at the same scale as before $\mu_R\sim\mu_F\sim 2m_{bottom}$.

- \ast Are collinear factorization and collinear PDFs still perfectly applicable at 100 TeV ?
- \ast At which energies/kinematical regimes high-energy factorization and transverse momentum dependent PDFs start to play a role ?
- * Will the FCC-hh be able to say anything on that ?

$\sigma(pp \rightarrow b\bar{b})$: contributions from initial state partons with different Bjorken-x

* At 100 TeV, min(x_1 , x_2) and max(x_1 , x_2) span a wider range than at 14 TeV. * At 100 TeV, min(x_1 , x_2) is peaked around $\sim 10^{-4}$, whereas max(x_1 , x_2) is peaked around $\sim 10^{-2.5}$

$\sigma(pp \rightarrow b\bar{b})$: dependence on gluon PDFs

For $pp \rightarrow b\bar{b}$ at 100 TeV, σ_{NLO} (CT10-nlo) $\sim 84\% \sigma_{NLO}$ (ABM11-nlo), but the scale uncertainty is larger.

$\sigma(pp \rightarrow b\bar{b})$ in different pseudorapidity ranges: contributions from initial state partons with different Bjorken-x

* We ask for at least 1 *b*-jet with $|\eta|$ in a fixed interval.

* At larger $|\eta|$, min (x_1, x_2) and max (x_1, x_2) span a wider range than at smaller $|\eta|$. * What about PDFs at x ~ 10⁻⁶ ?

Towards PDFs at small x

* PROSA collaboration paper [arXiv:1503.04581] pointed out the importance of using data collected at LHCb as a complementary tool with respect to those at HERA, to constrain PDFs in (x, Q^2) region unprecedently covered by HERA.

* PROSA fit: first fit including some LHCb data (charm and bottom) appeared in arXiv.

* NNPDF fit: recent attempt to follow a similar idea (Gauld et al. [arXiv:1506.08025]).

$\sigma(pp \rightarrow b\bar{b})$: minimum Bjorken-x and PDFs

 $|\eta| < 2.5$

 $5.0 < |\eta| < 8.0$

* At larger pseudorapidities the shapes of $\min(x_1, x_2)$ is particularly sensitive to the PDF choice.

 σ ($pp
ightarrow bar{b}$, $|\eta| < |\eta_{max}|$) vs $|\eta_{max}|$

 $\sqrt{s} = 14 \text{ TeV}$

 $\sqrt{s} = 100 \text{ TeV}$

- * saturation at larger $|\eta_{max}|$ for larger energy.
- * Important enhancement of the cross-section ($p_T > 100 \text{ GeV}$) at 100 TeV with respect to the 14 TeV scale \Rightarrow access to the boosted regime.

$\sigma(\textit{pp} ightarrow bar{b},\textit{p}_z > \textit{p}_{z,\textit{min}})$ vs $\textit{p}_{z,\textit{min}}$

* At larger energy/rapidity larger contribution from forward events.

・ロト・西・・西・・西・・日・ 今日・

$\sigma(\textit{pp} ightarrow bar{b},\textit{p}_z > \textit{p}_{z,\textit{min}})$ vs $\textit{p}_{z,\textit{min}}$

 $\sqrt{s} = 14 \text{ TeV}$ $\sqrt{s} = 100 \text{ TeV}$

* At larger energy/rapidity larger contribution from events with an highly collimated $b\bar{b}$ jet ($\Delta R_{b\bar{b}} < 0.4$).

$\sigma(pp ightarrow bar{b}, p_T > p_{T,min})$ vs $p_{T,min}$

 $\sqrt{s} = 14 \text{ TeV}$

 $\sqrt{s} = 100 \text{ TeV}$

* At larger energy/smaller rapidity larger contribution from large p_T events.

p_T distributions of B^+ mesons

* At larger energy/smaller rapidity, larger contribution from large p_T events.

p_T distributions of \mathbf{B}_s^0 -meson

* similar behaviour as for B^+ , but with smaller cross-section

y distributions of *B* mesons: PDF dependence

* The whole shape of distribution depends on PDF choice.

y distributions of B⁺-mesons: energy dependence

* Different shape of rapidity distributions at 14 TeV and 100 TeV \Rightarrow use the ratio (less prone to theoretical errors) to infer PDF behaviour

y distributions of B_s^0 -mesons: energy dependence

* similar behaviour as for B^+ , but with smaller cross-section

DR correlations between B and \overline{B} hadrons

 $\sqrt{s} = 14 \text{ TeV}$

 $\sqrt{s} = 100 \text{ TeV}$

* The contribution to the cross-section from (B, \overline{B}) pairs emitted in a collimated way increases at larger p_T .

p_T distribution of hardest *b*-jet

- * harder tails at 100 TeV
- * jets with large rapidity contribute to the low p_T part of distributions.

p_T and η distribution of bb jets

$\sqrt{s} = 14 \text{ TeV}$

$\sqrt{s} = 100 \text{ TeV}$

- * *bb* jets are defined by the presence of an highly collimated pair of *B* hadrons in the same jet (DR < 0.4).
- * their p_T distribution is harder than that of standard *b*-jet (i.e. b-jet coming from a single *b*-quark).
- * their rapidity distribution is wider.

Influence of jet-algorithm parameter R

* R choice may affect the value of the cross-section, depending on the cuts.

* In case of high p_T cuts, value of R has to be fixed in order to ensure the best separation between signal and background.

DR and invariant mass distributions of (b, b) jet pair

* The b-jets here considered track back to the original b-quarks.

* The shape of these distributions is not so affected by the change of \sqrt{s} .

Conclusions

* Up to the construction of the FCC collider hopefully a lot of progresses will be done in the developement of the best theoretical frameworks to better address the study of b-jets.

* In this presentation we include some very preliminary distributions for $pp \rightarrow b\bar{b}$ at 100 TeV at NLO QCD and NLO QCD + PS accuracy.

* At this accuracy, huge uncertainties come from scale variation, meaning that higher orders are really needed to achieve a better accuracy in the description of this process.

* We did not discuss a lot of other important issues: e.g. b-jet production in association with heavy particles (however treated in following talks), bjets from the decay of heavy objects, further discussion on jet algorithms for boosted studies, b-tagging at 100 TeV, b-JES.....

* For the report: investigate further distributions, possibly peculiar of the 100 TeV regime, separation S/B, alternative use of different tools/theory, estimate of the theoretical uncertainties.....