PDFs at large x for 100 TeV

Stefano Carrazza

QCD, EW and tools at 100 TeV, October 9, 2015, CERN

INTRODUCTION

- **Describe** the **differences** between **LHC** and **FCC** in terms of PDFs for luminosities and phenomenology.
- Identify the required improvements for a precise determination of PDFs at large x.

Disclaimer: results based on the current state of the art PDFs, great improvements expected before FCC: next 5-20 years.

- \cdot Introduction
- · Known issues at large *x*
- $\cdot\,$ PDFs and luminosities at FCC-hh 100 TeV
- · Large-x phenomenology at FCC-hh 100 TeV
- · Summary

KNOWN ISSUES AT LARGE X

There are 3 categories of issues when dealing with PDFs at large x:

- 1. Lack of experimental data*
- 2. PDF parametrization bias*
- 3. Theory :
 - EW corrections*
 - · Threshold resummation*
 - · Nuclear corrections and low Q related issues: TMCs, higher-twists, etc.

We will discuss *.

Lack of experimental data:

Current data has $x \leq 0.75 \Rightarrow$ almost **Tevatron** and **LHC data** points. \Rightarrow data with **large uncertainties** at **large** x

PDF parametrization bias:

Fixed parametrization, i.e. polynomials, underestimates PDF uncertainties. Possibly also NNPDF underestimates uncertainties.

Theory:

- · **EW corrections** \Rightarrow photon- (and lepton-) induced contributions:
 - · dominated by large uncertainties [arXiv:1508.07002]
- · Threshold resummation
 - resummation up to NLL and NNLL [arXiv:1507.01006]

PDFS AT FCC

pdfs at fcc-hh 100 tev

• FCC-hh 100 TeV PDF comparison for NNPDF3.0, CT14 and MMHT2014:

• Uncertainties **blow up at large** *x*.

pdfs at fcc-hh 100 tev

• For a given value of *x*, uncertainties **are smaller at FCC-hh 100 TeV** in comparison to **LHC 13 TeV**.

- · LHC \Rightarrow FCC-hh: PDF uncertainties are rescaled
 - **Example:** a 2 TeV state at LHC has much larger uncertainties than FCC-hh. FCC-hh is **"translated" to smaller** x **values**.

LUMINOSITIES FOR GLOBAL PDF FITS

· PDF luminosities are doubly differential quantities defined as:

$$\frac{d^2 \mathcal{L}_{ij}}{dy d\tau} = f_i(x_1, Q) f_j(x_2, Q), \quad x_1 \equiv \sqrt{\tau} e^y, \quad x_2 \equiv \sqrt{\tau} e^{-y}, \quad \tau \equiv M_X^2/s.$$

 \cdot We define the M_X -differential luminosities as:

$$\frac{d\mathcal{L}_{ij}}{dM_{\chi}^2} = \frac{1}{s} \int_{\tau}^{1} \frac{dx}{x} f_i(x, M_{\chi}) f_j(\tau/x, M_{\chi}), \quad \tau \equiv M_{\chi}^2/s$$

· The y-differential luminosities are given by

$$\frac{d\mathcal{L}_{ij}}{dy} = 2e^{-2y} \int_{\sqrt{\tau_{\text{cut}}}e^y}^{e^{-y}} dx x f_i(x, \sqrt{sx}e^{-y}) f_j(xe^{-2y}, \sqrt{sx}e^{-y})$$

with $\tau_{cut} \equiv M_{X,cut}^2/s$, which implies $M_X \ge M_{X,cut}$, necessary to ensure the IR and collinear finiteness of the cross section.

PDF LUMINOSITY FOR FCC-HH 100 TEV

• FCC-hh 100 TeV luminosity comparison for NNPDF3.0, CT14 and MMHT2014:

LUMINOSITIES FOR PDFS WITH QED CORRECTION

Luminosities based on PDF sets with **QED corrections**:

- · We use NNPDF2.3QED NLO where:
 - · DGLAP is NLO QCD and LO QED
 - quarks and gluons from the NNPDF2.3 global fit
 - \cdot photon PDF extracted from DIS and LHC data (2013)
 - · lepton PDFs model based on photon splitting a leading-log accuracy:

$$\ell^{\pm}(x,Q_0) = \frac{\alpha(Q_0)}{4\pi} \ln\left(\frac{Q_0^2}{m_{\ell}^2}\right) \int_x^1 \frac{dy}{y} P_{\ell\gamma}^{(0)}\left(\frac{x}{y}\right) \gamma(y,Q_0)$$

with $\ell = e, \mu$. More details in [arXiv:1508.07002].

Luminosities based on PDF sets with **QED corrections**:

- · We use NNPDF2.3QED NLO where:
 - \cdot $\,$ DGLAP is NLO QCD and LO QED $\,$
 - $\cdot\,$ quarks and gluons from the NNPDF2.3 global fit
 - \cdot photon PDF extracted from DIS and LHC data (2013)
 - · lepton PDFs model based on photon splitting a leading-log accuracy:

$$\ell^{\pm}(x,Q_0) = \frac{\alpha(Q_0)}{4\pi} \ln\left(\frac{Q_0^2}{m_{\ell}^2}\right) \int_x^1 \frac{dy}{y} P_{\ell\gamma}^{(0)}\left(\frac{x}{y}\right) \gamma(y,Q_0)$$

with $\ell = e, \mu$. More details in [arXiv:1508.07002].

Motivation:

Quantify the impact of photon- and lepton-induced processes at LHC 13 TeV and FCC-hh 100 TeV.

PDF LUMINOSITY WITH QED CORRECTIONS AT FCC-HH 100 TEV

M_X-luminosities at the LHC (13 TeV) and FCC-hh (100 TeV):

PDF LUMINOSITY WITH QED CORRECTIONS AT FCC-HH 100 TEV

y-luminosities at the LHC (13 TeV) and FCC-hh (100 TeV):

THRESHOLD RES. LUMINOSITIES

PDF LUMINOSITY WITH THRESHOLD RES. AT FCC-HH 100 TEV

• FCC-hh 100 TeV luminosity comparison for standard fit vs threshold resummed fits:

· Similar uncertainties, different central values.

LARGE-X PHENOMENOLOGY AT FCC

Phenomenology with MadGraph5_aMC@NLO

We consider processes at 13 TeV LHC and 100 TeV FCC-hh:

- · Drell-Yan, dijet, 4 leptons production, lepton-pair production in SM
- uncertainties refer to **PDF uncertainties** at the 68% c.l.
- $\cdot\,$ all simulations are done at the LO and parton level

Photon- and Lepton-induced in MadGraph5_aMC@NLO

- · Implementation of the lepton luminosities in MG5_aMC@NLO
- · Using NNPDF2.3QED as prior set with lepton PDF ansatz.

NEUTRAL DRELL-YAN

- · e^+e^- production:
 - · left: LHC 13 TeV, $p_T(e^{\pm}) >$ 10 GeV, $|\eta(e^{\pm})| <$ 2.5
 - \cdot right: FCC 100 TeV, $p_T(e^{\pm}) >$ 100 GeV and $|\eta(e^{\pm})| <$ 4

- · PDF-observable correlations: LHC vs FCC
 - \cdot same setup as before, 10 bins of invariant mass.
 - · LHC with $m \gtrsim 4$ TeV, $|\eta| < 2.5$, $p_T > 10$ GeV touches values in x larger FCC up to 20 TeV with $|\eta| < 4$ and $p_T > 100$ GeV.

· Increase effective x by reducing the rapidity cut from $|\eta| < 4$ (left) to $|\eta| < 2.5$ (right).

· Larger domain in x from $m \gtrsim 30 - 40$ TeV with $|\eta| < 2.5 - 4$.

- \cdot Dijet production:
 - $\cdot\,$ high invariant mass, LHC (left) and FCC-hh (right)
 - \cdot 100% probability of photons/leptons faking jets is assumed

w^+w^- into 4 leptons

- W pair production at:
 - · LHC 13 TeV (left) and FCC-hh 100 TeV (right)
 - · photon-induced effects are not negligible

- · 4-lepton production:
 - \cdot LHC 13 TeV (left), FCC-hh 100 TeV (right), similar results for $e^+e^-e^+e^-$
 - · Included all diagrams with/without intermediate Z bosons.

SUMMARY

Conclusions:

- 1. From LHC to FCC we observe the PDF scaling in x.
 - for a fixed Q, FCC uses values of x smaller than LHC
- 2. At FCC we expect a coverage in *x* larger than LHC, however thanks to the scaling precise measurements at LHC improve the PDF uncertainty control at FCC.
 - \cdot extension of the domain in x possible at very high-masses in the FCC
- 3. Always consider EW corrections to PDFs with uncertainties
 - $\cdot\,$ better determinations are required, to be released in the next years

New LHC data will improve the overall framework in the next years.

• e.g. high-mass Drell-Yan, high $-p_T$ jets, etc.

THANK YOU!

PDF LUMINOSITY FOR LHC AND FCC-HH

FCC-hh 100 TeV luminosity comparison for collider-only vs global fit:

• Future data will improve this situation.

PHOTON PDF FROM W AND Z PRODUCTION AT LHC

· Photon PDF comparison with MRST2004QED @ Q = 2 and 10^4 GeV^2

- · First determination of the photon PDF uncertainty.
- Good agreement with MRST2004QED model at large x.
- The photon PDF momentum fraction is less than 1%.

Dataset	Observable	$N_{\rm dat}$	$[\eta_{\min}, \eta_{\max}]$	$\left[M_{11}^{\min}, M_{11}^{\max}\right]$
LHCb γ^*/Z Low Mass	$d\sigma(Z)/dM_{ll}$	9	[2,4.5]	[5,120] GeV
ATLAS W, Z	$d\sigma(W^{\pm},Z)/d\eta$	30	[-2.5,2.5]	[60,120] GeV
ATLAS γ^*/Z High Mass	$d\sigma(Z)/dM_{ll}$	13	[-2.5,2.5]	[116,1500] GeV

For each replica *k* compute predictions with:

- **DYNNLO** for QCD NLO/NNLO channels
- · HORACE for photon-induced contributions

Determine the weight of replica $k \Rightarrow w_k \propto \chi_k^{n-1} e^{-\frac{1}{2}\chi_k^2}$ (arXiv:1108.1758)

LHC electroweak vector boson data reduces the photon PDF uncertainties.

• Example: LHC predictions before including LHC data (DIS-only):

• Example: LHC predictions after including LHC data:

