

Changes of BLM Thresholds for IR7 Collimators During TS2 - Strategy and Status of Preparation

<u>A. Mereghetti</u>, S. Redaelli, B. Salvachua Ferrando

MPP Meeting, CERN, 14th Aug 2015

- Motivation for the study;
- Increase in BLM thresholds;
- Conclusions and outlook;

- Run 1 thresholds: already updated to 200/500kW, as proposed by S. Redaelli, B. Salvachua Ferrando, D. Wollmann (2012):
 - IR7: LHC-BLM-ECR-0033;
 - IR3: LHC-BLM-ECR-0034;

phylosophy:

- Changes in MT:
 - RS08-RS11: flattened to 500kW;
 - RS12: 200kW;
- MF=0.4;
- Required by beam dumps on long RSs;
- Run 2: new LHC operational conditions:
 - Higher beam energy;
 - Slightly different collimator settings;
 - \rightarrow need to newly update thresholds;
- Method: scale qualification loss maps (LMs) to a desired (target) level of losses:

MPP, CERN, 2015-08-14

Motivation (II)

- LMs campaign: Jun 2015; → LMs (B1/2,H/V) at FT, with squeezed and colliding beams (no XRPs);
- LMs are based on RS09 (1.3s integration time): → analysis performed on RS09: scaling factor;
- For the moment: IR7 only (i.e. betatron losses);
 → no particular needs expected on IR3 (for the time being);
- Design specifications of collimation system at FT (betatron cleaining only): 500kW for 1-10s and 100kW steady state;
 - ...but 200kW in steady state can be tolerated;
 - \rightarrow let's keep these figures on MT, and MF = 0.4 (i.e. 200kW for 1-10s) as operational setting;

Example: THRI_7_TCP

Other Elements

Element	Position	2015	2012
тст	4L8	2.8	2.3
MQY	4/5 L/R 6	3.4	0.9
MQTL	6 L/R 7	2.2	0.8
MQWA	D/E 5L7	1.15	1.8
MQ	8R7	1.14	0.6

Other elements are involved as well (not for the first time) \rightarrow thresholds of warm magnets are being updated at the same time;

Another Option

Conclusions

- Scaling of Run 1 BLM thresholds to 200kW and 500kW beam losses done, based on qualification loss maps;
 - Focus: IR7 (i.e. Betatron losses);
 - LMs: campaign of Jun 2015;
 - Scaling performed on basis of RS09 only;
 - \rightarrow thresholds for other long RSs should be increased by the same factor;
 - \rightarrow shorter RSs are not touched
 - Increase factors are available:
 - Factor 5 at most (TCP.C6L7, B1V);
 - Some BLMs not at IR7 collimators are involved as well factor 3 at most (MQY.05L6, B2H);
 - Protection of collimators at 500kW (estimated limits):
 - Factor ~4 above limit for S primary collimator;
 - Factor ~20 above limit for TCSG collimators (no cross-talk conservative);
 - Factor ~22 above limit for TCLA collimators (those hit by showers started in TCPs of the other beam - previously: 400, LHC-BLM-ECR-0010);
 - \rightarrow we start anyway with 200kW: we believe anyway that these figures can be tolerated;

Outlook

- Implement the new curve of allowed proton losses from S.Redaelli, F. Carra et al. (8th BLMTWG);
- Better describe the dependence of MT on beam energy; \rightarrow allowed proton losses scale with beam energy, keeping constant power losses: $N_p(E_b)$
- Extend studies on signal per impacting proton (a.k.a. "Fluka Factors"):
 - Dependence on energy;
 - Dependence on material (Cu and W);
 - Empirically measure cross-talk? (as done in 2010);

Rectangular hyperbola: constant power

MPP, CERN, 2015-08-14

A.Mereghetti

Back Up Slides

THRI_7_TCSG

THRI 7 TCSG_F5

THRI_7_TCSG_F5 - 6.5TeV

MPP, CERN, 2015-08-14

A.Mereghetti

THRI.06_7_CD_TCLA

THRI.06_7_CD_TCLA - 6.5TeV

MPP, CERN, 2015-08-14

A.Mereghetti

THRI.07 7 AB TCLA

LHC Collimation

Project

CERN