From the Plum Pudding to the string theory

Revolutionary ideas and discoveries in the 20th century for a modern particle physics

g. de cataldo (INFN Bari italy)

CERN 27-28/October/15 Swedish Teacher Program

Outlines

• Disclaimer!

- Introduction to Introduction to particle• \bigcirc particle physics 2 physics 1
 - From the Plum-Pudding atomic model to the Bohr model;
 - Special relativity -> general relativity (GR); igodol
 - Quantum Mechanics (QM) •

past

Quantum Field Theory (QFT) ightarrow

- The standard model (SM) of forces and particles; \bigcirc
- The BEH boson (Higgs boson)

present

Introduction to particle physics 3

- Beyond the SM: Supersymmetry (SUSY) for the electro-strong unification (GUT),
- Beyond GUT: GR + QM : ightarrowString theories?, Mtheory? Loop quantum Gravity?.....

CERN 27-28/October/15 Swedish Teacher Program

future

g. de cataldo (INFN Bari italy

Introduction to the "Standard Model"

- In the first half of 20th century the zoology of the particle became very populated (cosmic rays and colliders);
- SM was developed throughout the latter half of the 20th century, as a collaborative effort of scientists around the world;
- SM is a theory concerning the electromagnetic, weak, and strong nuclear interactions in the framework of the space-time of SR;
- It mediates the dynamics of the known subatomic particles;

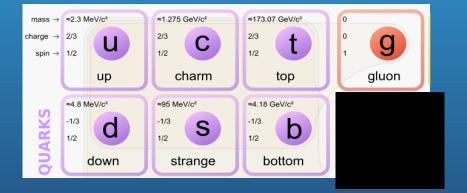
Introduction to the "Standard Model"

- Following the QED example, the SM is a paradigm of a Quantum Field Theory (QFT). Interacting particles exchange a force mediator called gauge boson;
- the force mediator are bundles of energy (quanta) of gauge fields;
- The gauge fields are included to ensure invariance (in addition to rotation, translation and reference frame invariance of special relativity) of the interaction (Lagrangian) under certain transformations.
- Once the gauge field is quantized, the quanta of the gauge fields are the force mediators called gauge bosons.
- This mechanism leads to the unification of forces embodied in the SM.

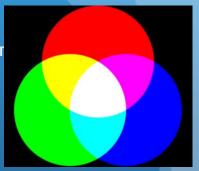
CERN 27-28/October/15 Swedish Teacher Program

g. de cataldo (INFN Bari italy)

Strong nuclear interaction


- 1930 Many particles were discovery in the cosmic rays and collider experiments: particle zoology rapidly growing;
- 1973 Looking for basic constituents, Bardeen, Fritzsch, Gell-Mann proposed a model based on 3 quarks, with fractional electric charge, with three type of strong charges, namely: red, green and blue (color charges);
- Soon the discovery of new particles announced the existence of other quarks: six at the end;

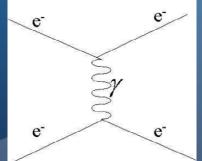
Quantum Chromo Dynamics


Theory constructed in analogy to QED

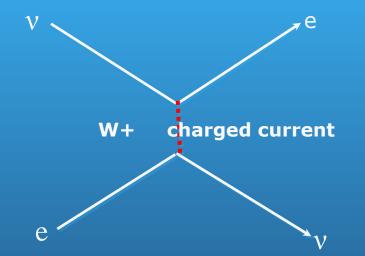
QCD: 3 different charges ("colour charge") [red, green, blue]*

'Strong force' between quarks is transmitted by (8) gluons (massless), the gauge bosor

this has nothing to do with our visible colours!! Just an analogy



Dogma of QCD: Only colour-neutral bound states are allowed, explains:


MESONS = Quark-Antiquark BARYONS = 3-Quark states

Weak interaction Fermi model turn out to be inconsisten at E>300GeV Probability of this reaction > 100% (E > 300 GeV) n n New Idea (1958) S. Glashow ρ Fermi model Weak interaction transmitted by massive vector bosons

(in analogy to photon exchange) Large mass (80 GeV) explains short range (2.10⁻¹⁸ m) and small cross-sections

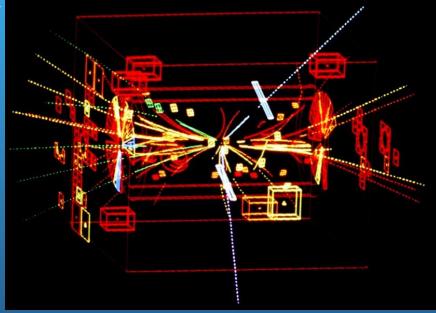
Weak Interaction

Z° Neutral current

e

Glashow, Salam, Weinberg (1968) - Electroweak Force

• The electromagnetic and weak interaction are different aspects of the same 'electroweak' force


e

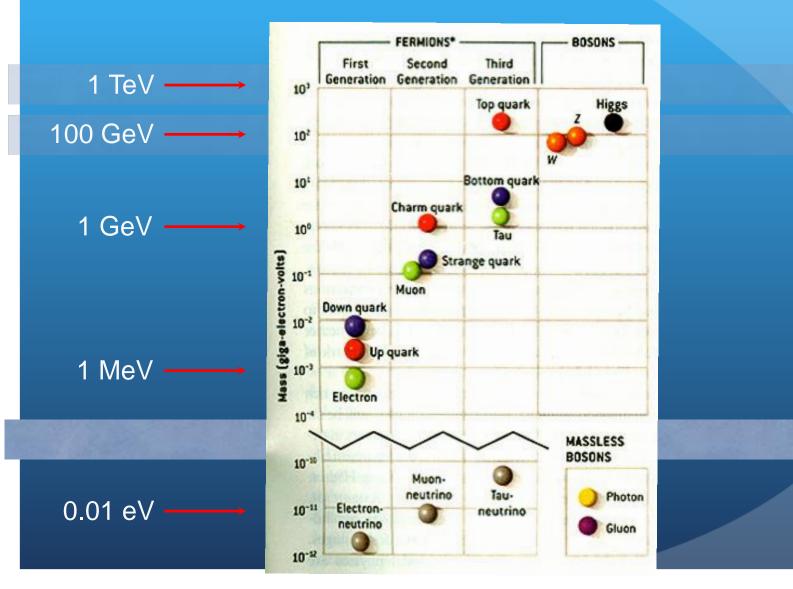
- All quarks and leptons have a 'weak' charge and feel the w.i. in the same way*
- w.i. range ->there should be a 'heavy photon' (Z°) and two charged vector boson (W^{\pm}) of mass ~ 50-100 GeV

The W,Z bosons acquire their mass by interacting with the "Higgs field" (1964)

*Assuming a little bit of 'quark' mixing

biscovery of the W, Z bosons at CERN-LEP (1983)

New experimental confirmation of the standard model via the detection of the weak gauge bosons


(C. Rubbia, S. van der Meer)

The BEH Boson

CERN 27-28/October/15 Swedish Teacher Program

g. de cataldo (INFN Bari italy)

How do particles obtain their respective masses

The Brout-Englert-Higgs field

idea

The Brout-Englert-Higgs field idea: the entire Universe is filled with a homogeneous field massless particles <u>interacting with this field obtain inertia (=rest mass</u>) the BEH field interaction is proportional to the mass of the particle The 'cocktail party' explanation of the Higgs mechanism

A cocktail party ...

The BEH field

.. a famous person wants to traverse the room...

... a massless particle enters...

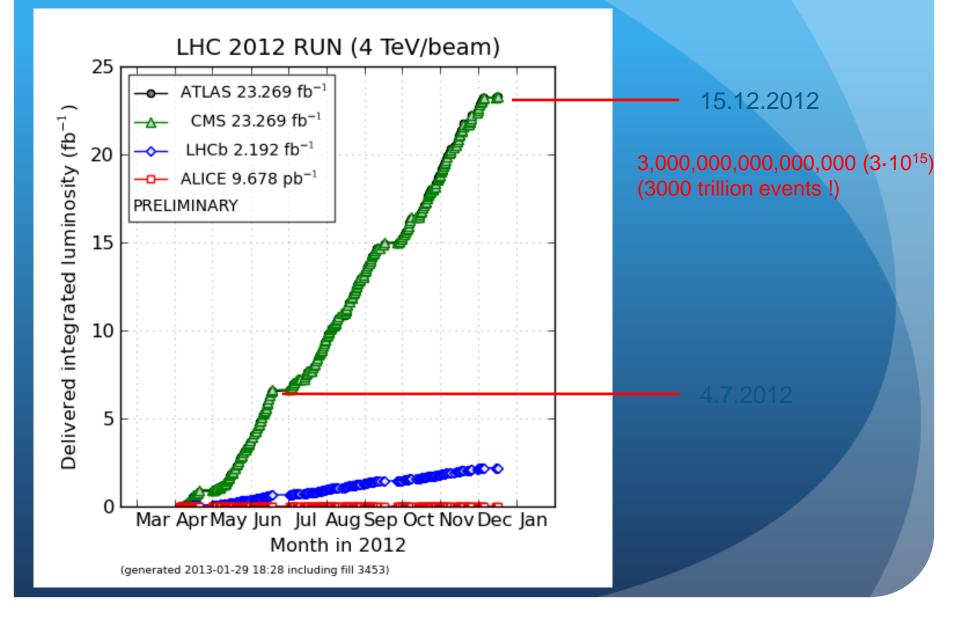
.. but the guests cluster around and slow down its movement...

... the interaction with the BEH field produces the inertia of the particle ...

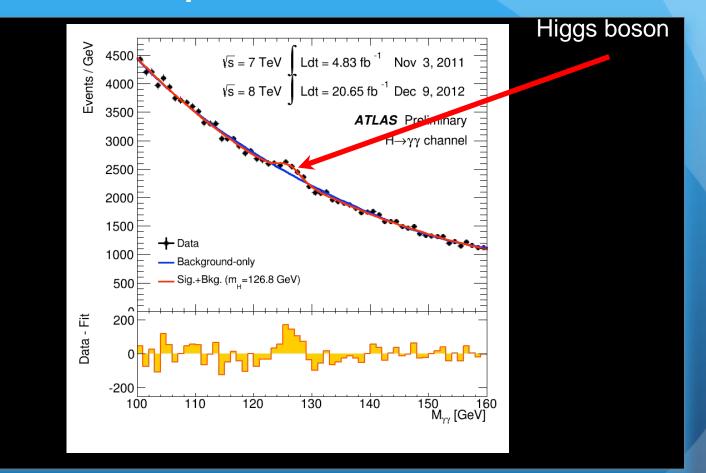
The Higgs boson[,]

A rumour is spreading among the guests ...

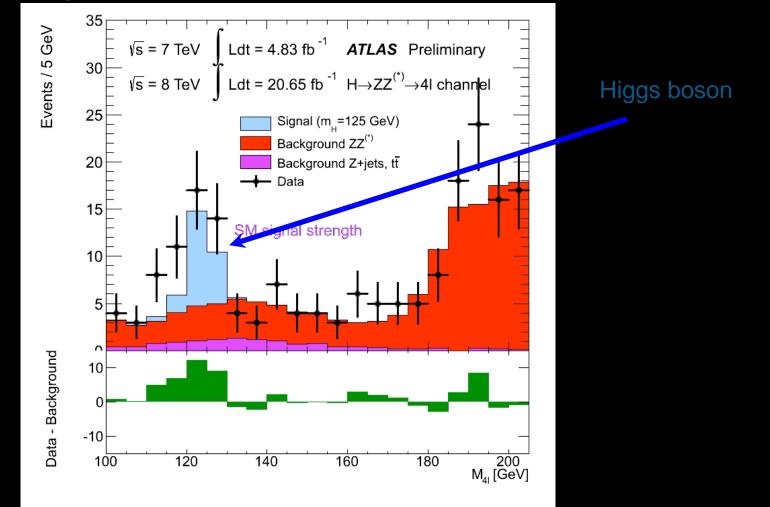
.. they cluster together to exchange the information among themselves...


The BEH field ...

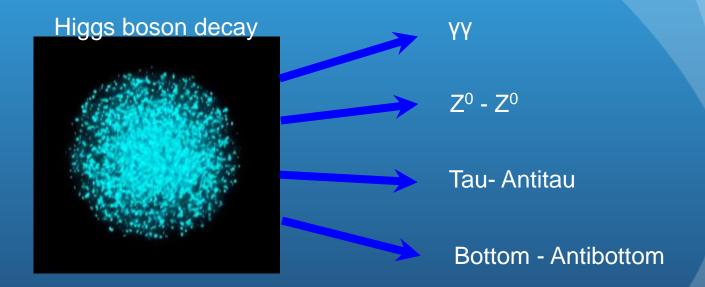
... is excited by an energy concentration and forms an excitation by self-interaction ...


How do we know that it is the Higgs boson ?

4 July 2012 The Higgs boson can decay in two photons but only with a probability of 0.2 %


2011 - 2012 : Data taking with LHC

The evolution of the histogram with two-photon events

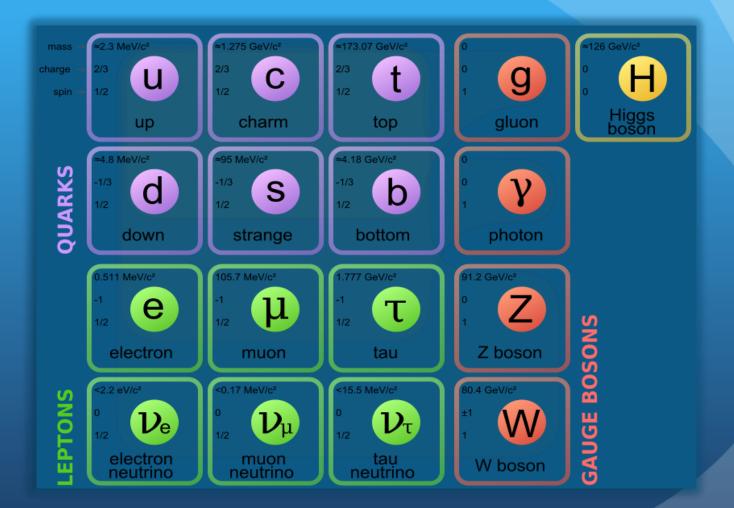


four leptons

Is it the Higgs boson?

Update 14.3.2013: CERN Press Release More data confirm: new particle = Higgs boson

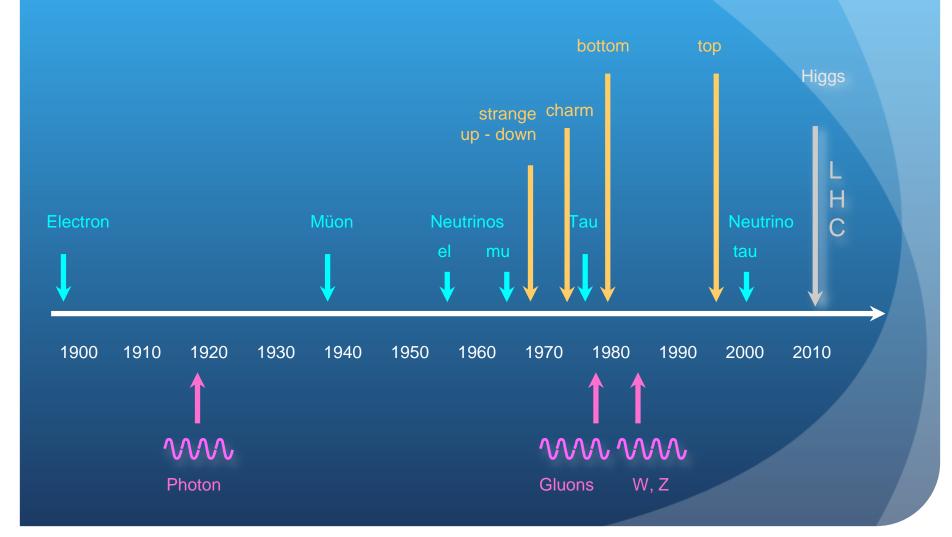
Theoretical expectations compatible with observations



Even more:

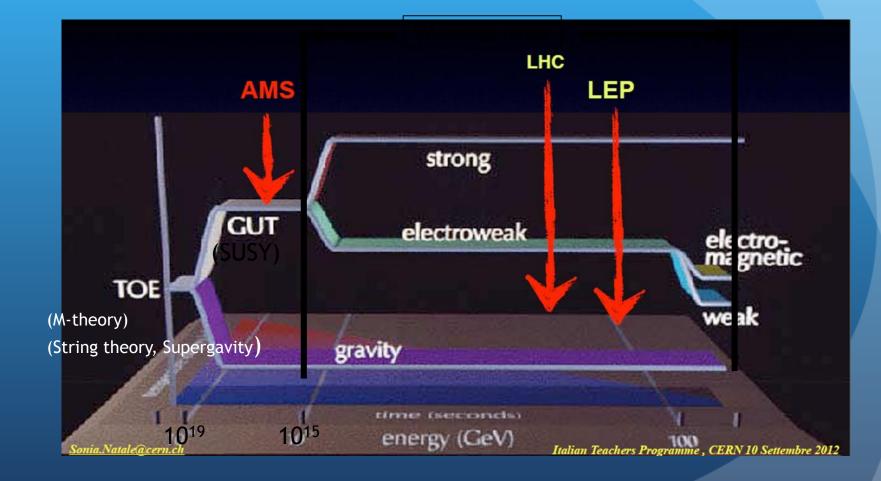

What does this mean?

- the Higgs boson exists, therefore ...
- the Brout-Englert-Higgs field exists
- we know how particles obtain their mass
- the "Standard model" is complete
- empty space is not 'empty'
- perhaps a connection to 'dark energy' ?

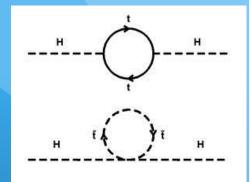

The SM 'element table'

BEH boson

Experiments at accelerators have discovered all particles of the SM

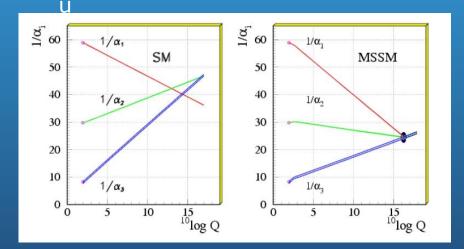


Supersymmetry (SUSY) & String theory


CERN 27-28/October/15 Swedish Teacher Program

g. de cataldo (INFN Bari italy)

Beyond the SM towards a Theory of Everithing



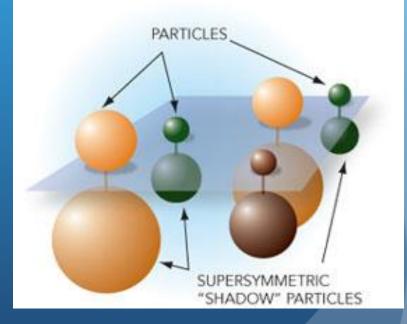
Why SUSY

1) "Protection of the Higgs boson mass (M $\sim 10^2$ GeV) from vacuum fluctuations up to Planck mass ($\sim 10^{19}$ GeV)

2) Predicts unification of electroweak and strong interaction at $\sim 10^{17}$ GeV

3) May explain the cosmological matter-antimatter asymmetry

4) Lightest supersymmetric particle = dark matter ??


SUPERSYMMETRY

A connection between particles (spin 1/2) and fields (spin 1)? LCH

FERMIONS (quarks, electrons, neutrinos) interact through the exchange of BOSONS (gluons, photon, W/Z bosons)

"SUPERSYMMETRY" predicts a complete symmetry between FERMIONS AND BOSONS: each fermion has a boson partner, and vice versa:

Spin 1/2	Spin 0, Spin 1
electron	
quark	

But: no such SUSY partner has ever been seen. So ... if they exist, they must have a large mass (> 1 TeV)

The Large Hadron Collider (2015 - ...)

New discoveries are waiting !

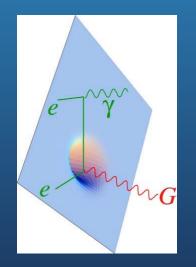
String Theory

CERN 27-28/October/15 Swedish Teacher Program

g. de cataldo (INFN Bari italy)

String theory

What is a particle?

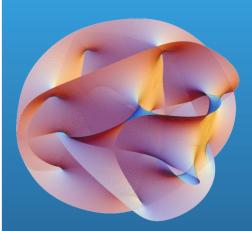


Superstrings in 9+1 dimensions?

Little strings of string energy vibrating in a 9+1 dimensional space ? L $\sim 10^{-35}$ m (Planck length) Standard model particles: different vibration modes, open/closed strings GRAVITON-like particle contained (unification of SM and gravity?)

BUT: why did 6 dimensions disappear? how did they disappear? is there a unique way to go from 10 to 4 dimensions?

Quantum Gravitation


More than 3 macroscopic dimensions of space?

Is the graviton propagating in 4- or more dimensions of space?

Micro-black holes ?

MORE MYSTERIES

There exist five type of string theory, the M-theory integrate all of them as special case

This image of the <u>en:Calabi-Yau manifold</u> appeared on the cover of the November 2007 issue of <u>en:Scientific American</u>.

*) http://en.wikipedia.org/wiki/M-theory

M-theory*): p-brane in 11 dimension for the unification of SM+Gravity in a Theory of Everithing (ToE)

A p-brane is a physical object that generalizes the notion of a point particle to higher dimensions. For example, a point particle can be viewed as a brane of dimension zero, while a string can be viewed as a brane of dimension one.

Branes are dynamical objects which can propagate through <u>spacetime</u> according to the rules of <u>quantum</u> <u>mechanics</u>. They have <u>mass</u> and can have other attributes such as <u>charge</u>. A *p*-brane sweeps out a (*p*+1)dimensional volume in spacetime called its *worldvolume*. Physicists often study <u>fields</u> analogous to the <u>electromagnetic field</u> which live on the worldvolume of a brane.

Loop quantum gravity (LQG)

- Contender of string theory, the loop quantum gravity unify the QM with the Einstein GR;
- The space is discrete and quanta of gravitational field (10⁻³⁵ m, Plank scale) are connected one to the other by ever changing 'links'
- The LQG space is quantized and forms a kind of foam where there is no need of string or supersymmetry to unify quantum mechanics with GR.

Summary part 2-3

- 1900 2015: Fantastic progress in understanding matter and the Universe;
- SM: a complete framework to describe the subnuclear world but...;
- There are evidence that new physics is required (expected) after the discovery of BEH boson: is supersymmetry the good candidate?
- It would provide naturally the electro-strong unification;
- And for a TOE? String in 10 dimensions for the unification of gravitational and electro-strong forces; there exist 5 string theory;
- Loop quantum gravity as alternative candidates to String;
- M-theory in 11 dimension to unify the five string theories (special cases)!
- A lot of work to be done but now let LHC to provide experimental data to discriminate such abundance of theory!