COSMO-15, the 19th annual International Conference on Particle Physics and Cosmology

Contribution ID: 131

Type: not specified

Dynamically Induced Planck Scale and Inflation

Tuesday 8 September 2015 14:00 (20 minutes)

Theories where the Planck scale is dynamically generated from dimensionless interactions provide predictive inflationary potentials and super-Planckian field variations. We first study the minimal single-field realisation in the low-energy effective field theory limit, finding the predictions $n_s \approx 0.96$ for the spectral index and $r \approx 0.13$ for the tensor-to-scalar ratio, which can be reduced down to ≈ 0.04 in presence of large couplings. Next we consider agravity as a dimensionless quantum gravity theory finding a multi-field inflation that converges towards an attractor trajectory that predicts $n_s \approx 0.96$ and 0.003 < r < 0.13, interpolating between the quadratic and Starobinsky inflation. These theories relate the smallness of the weak scale to the smallness of inflationary perturbations: both arise naturally because of small couplings, implying a reheating temperature of 10^{7-9} GeV. A measurement of r by Keck/Bicep3 would give us information on quantum gravity in the dimensionless scenario.

Presenter: RACIOPPI, Antonio (NICPB, Estonia)

Session Classification: Inflation and phase transitions