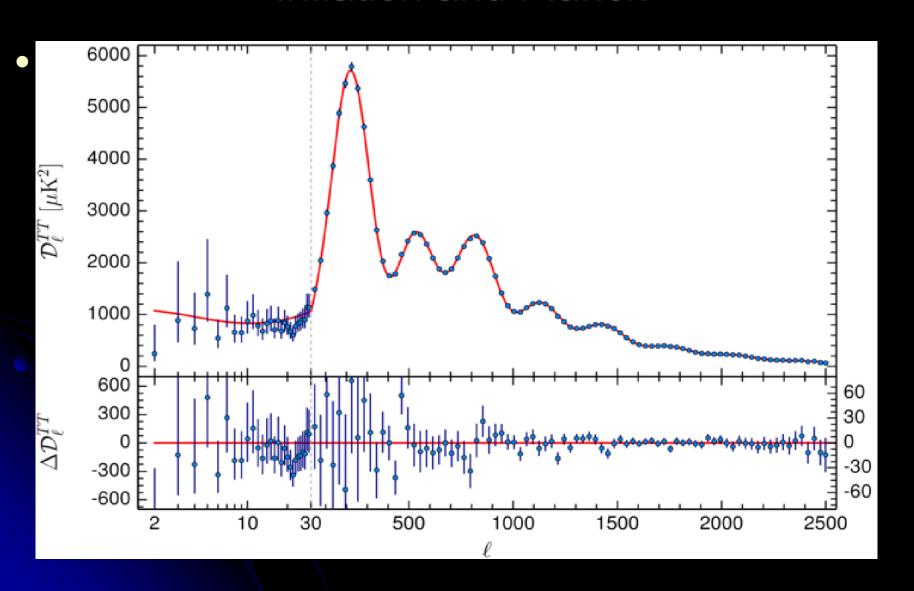


Shaft Inflation

Konstantinos Dimopoulos

Lancaster University

Inflation and Planck



Inflation and Planck

- Planck satellite CMB observations confirm the vanilla predictions of cosmic inflation for the primordial curvature perturbation:
 - Gaussian
 - Adiabatic

- Statistically isotropic & homogeneous
- (almost) Scale-invariant (with red tilt)

$$n_s = 0.968 \pm 0.006$$

- Planck data favour single field inflation Planck2015, 1502.01589
- In conjunction with other data Planck favours inflationary plateau
- Prominent examples: R² Inflation, Higgs Inflation and T-model Inflation
 A.A.Starobinski, PLB91(1980)99; F.L.Bezrukov & M.Shaposhnikov,
 PLB659(2008)703; A.Linde, arXiv:1402.0526 [hep-th]
- Power-law approach to inflationary plateau: Shaft Inflation

KD, PLB735(2014)75

Bottom-up vs Top-down

- Top-down scenario: Models based on "realistic" constructions
 - String-inspired, SUSY/SUGRA etc.
 - Look for specific signatures in data (e.g. non-Gaussianity)
 - ► Planck observations favour "easy" constructions
- Bottom-up scenario: Model constructions "suggested" by data
 - Data-inspired, "guess-stimates"
 - Uses Early Universe as Lab to investigate fundamental physics
- Shaft Inflation proposes power-law approach to inflationary plateau in context of global SUSY
 KD, PLB735(2014)75

The Inflationary Potential

ullet Toy model superpotential: $egin{aligned} W = M^2 & \overline{\Phi^{nq+1}} \ \hline (\Phi^n + m^n)^q \end{aligned}$

- lacksquare When $lacksquare{\Phi}\gg m$: $lacksquare{W}\simeq M^2\Phi$ O' Raifearteagh ightarrow De Sitter Inflation
- When $|\Phi| \ll m$: $W \propto \Phi^{nq+1}$ Chaotic monomial Inflation
- Further take q=-1/n: $W=M^2(\Phi^n+m^n)^{1/n}$ Shaft Inflation
- Scalar Potential: $\Rightarrow V = M^4 |\Phi|^{2(n-1)} |\Phi^n + m^n|^{2(\frac{1}{n}-1)}$

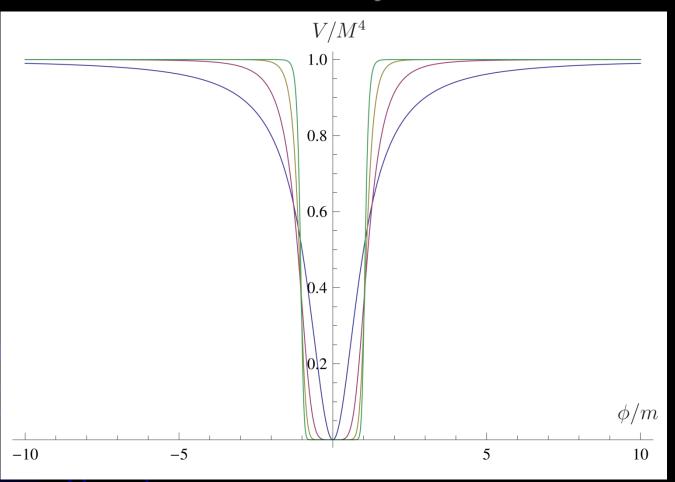
$$egin{aligned} \Phi \equiv \phi \, e^{i heta} \ \phi, heta \in {
m I\!R} \, \, \& \, \phi > 0 \end{aligned} \Rightarrow V = rac{M^4\phi^{2(n-1)}}{[\phi^{2n} + m^{2n} + 2\cos(n heta)m^n\phi^n]^{rac{n-1}{n}}} \end{aligned}$$

Minimised: $n\theta = 2\ell\pi$ with $\ell \in \mathbb{N}$

Further $-\phi = \phi e^{i\pi}$ so $V(\phi) = V(-\phi)$ with $n=2\ell$ even

- When $\phi\gg m$: $Vpprox M^4$ \Rightarrow $V(\phi)=M^4\phi^{2n-2}(\phi^n+m^n)^{\frac{2}{n}-2}$
- When $\phi \ll m$: $V \propto \phi^{2(n-1)} \Rightarrow n \geq 2$ $\forall \phi \in {\rm I\!R}$

The Inflationary Potential



- Scalar Potential for Shaft Inflation for n=2,4,8,16
- The shaft becomes more pronounced as n grows.
- Far from the origin $Vpprox M^4$, whereas near the origin $V\propto \phi^{2(n-1)}$

Slow-Roll Parameters

$$\epsilon \equiv rac{1}{2} m_P^2 \left(rac{V'}{V}
ight)^2 = 2(n-1)^2 \left(rac{m_P}{\phi}
ight)^2 \left(rac{m^n}{\phi^n+m^n}
ight)^2$$

$$\eta \equiv m_P^2 rac{V''}{V} = 2(n-1) \left(rac{m_P}{\phi}
ight)^2 \left(rac{m^n}{\phi^n+m^n}
ight) rac{(2n-3)m^n-(n+1)\phi^n}{\phi^n+m^n}$$

Spectral Index:

$$m{n_s} = 1 + 2\eta - 6\epsilon = 1 - 4(n-1) \left(rac{m_P}{\phi}
ight)^2 rac{m^n[(n+1)\phi^n + nm^n]}{(\phi^n + m^n)^2}$$

Slow-Roll Parameters

• Inflation ends when $|\eta|\simeq 1\Rightarrow \phi_{
m end}\simeq m_P\left[2(n^2-1)lpha^n
ight]^{1/(n+2)}$ where $lpha\equiv rac{m}{m_P}$ and $\phi>m$

$$N = rac{1}{m_P^2} \int_{\phi_{
m end}}^{\phi} rac{V}{V'} {
m d}\phi \simeq rac{1}{2(n-1)(n+2)lpha^n} \Bigg[igg(rac{\phi}{m_P}igg)^{n+2} - igg(rac{\phi_{
m end}}{m_P}igg)^{n+2} \Bigg]$$

$$\Rightarrow \phi(N) \simeq m_P \left[2(n-1)(n+2)\alpha^n \left(N + \frac{n+1}{n+2} \right) \right]^{1/(n+2)}$$

n_s and r

$$n_s = 1 - 2 rac{n+1}{n+2} \left(N + rac{n+1}{n+2}
ight)^{-1}$$

$$r = 16\epsilon = 32(n-1)^2 \alpha^{\frac{2n}{n+2}} \left[2(n-1)(n+2) \left(N + \frac{n+1}{n+2} \right) \right]^{-2(\frac{n+1}{n+2})}$$

• Dependence on $\alpha \equiv \frac{m}{m_P}$ only for tensor/scalar ratio

Examples

$$ightharpoonup$$
: $n = 2$

$$V(\phi)=M^4rac{\phi^2}{\phi^2+m^2}$$

• Such potential is also featured in S-dual superstring inflation (with $\alpha = \frac{1}{4}$) and also in radion assisted gauge inflation (with $\alpha \sim 10^{-3/2}$)

A.De la Macorra & S.Lola, PLB373(1996)299; M.Fairbairn, L.Lopez Honorez & M.H.G.Tygat, PRD67(2003)101302

$$n_s=1-rac{3}{2}\left(N+rac{3}{4}
ight)^{-1}$$
 & $r=rac{32lpha}{\left[8\left(N+rac{3}{4}
ight)
ight]^{3/2}}$

$$oldsymbol{n_s} = 1 - rac{2}{N+1}$$

$$egin{aligned} oldsymbol{n_s} = 1 - rac{2}{N+1} & & & & r = rac{8lpha^2}{n^2(N+1)^2}
ightarrow 0 \end{aligned}$$

Same as R² – Inflation, Higgs Inflation and T-model Inflation

Agreement with Planck

• Consider $\alpha = 1$

$$ightharpoonup : n = 2$$

$$N = 60 \Rightarrow n_s = 0.975 \quad r = 0.0030$$

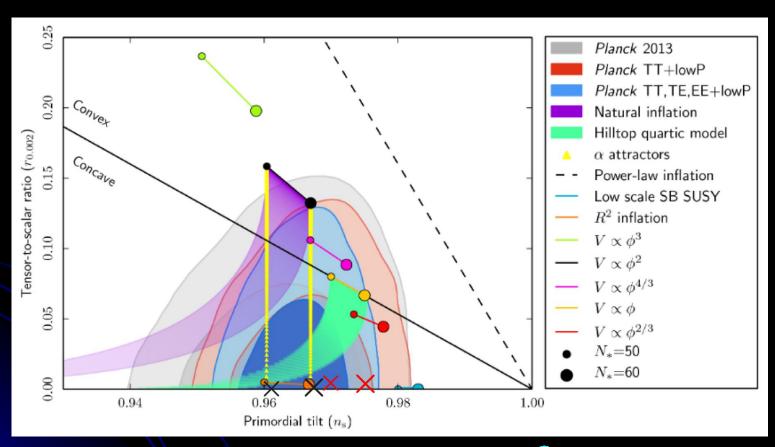
 $N = 50 \Rightarrow n_s = 0.970 \quad r = 0.0039$

 \blacktriangleright : $n\gg 1$

$$n_s = 0.967$$
 $n_s = 0.961$ for $N = 60$ & $N = 50$

Agreement with Planck

ullet Consider lpha=1



- ullet Big (small) red cross corresponds to n=2 with N=60 (50)
- ullet Big (small) black cross corresponds to $n\gg 1$ with N=60 (${f 50}$)

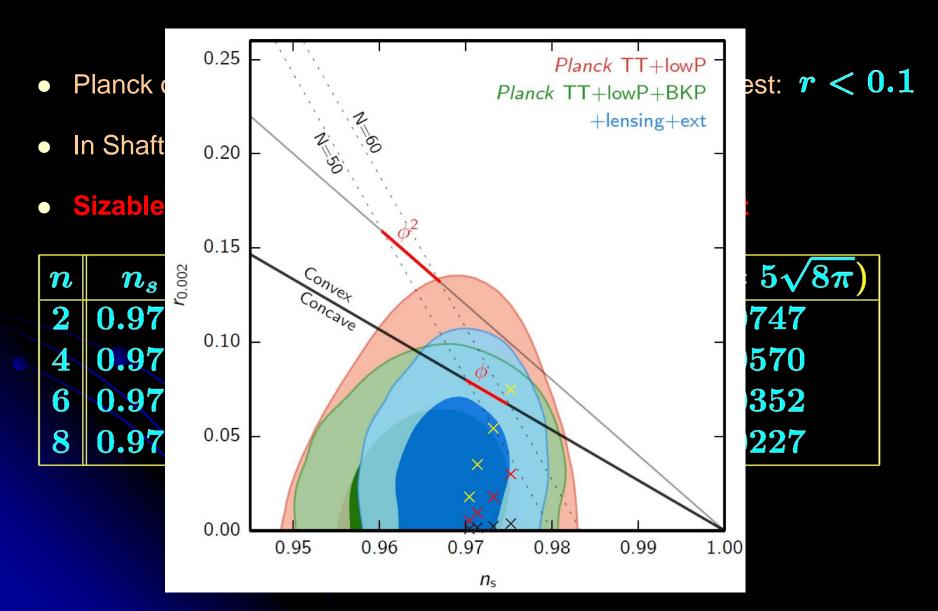
Gravitational Waves

- Planck observations (with BICEP2 and Keck Array) suggest: r < 0.1
- In Shaft Inflation: $r \propto \alpha^{2n}/(n+2)$ \Rightarrow
- Sizable tensors can be attained by widening the shaft

n	n_s	$r (\alpha = 1)$	$r \ (\alpha = 2\sqrt{8\pi})$	$r \ (\alpha = 5\sqrt{8\pi})$
2	0.975	0.0030	0.0299	0.0747
	0.973		0.0168	0.0570
6	0.971	0.0003	0.0089	$\boldsymbol{0.0352}$
8	0.970	0.0001	$\boldsymbol{0.0052}$	0.0227

$$m=lpha m_P=rac{lpha}{\sqrt{8\pi}}M_P$$

Gravitational Waves



More on Shaft Inflation

Running of spectral index:

$$\frac{\mathrm{d}n_s}{\mathrm{d}\ln k} = -\frac{2\left(\frac{n+1}{n+2}\right)}{\left(N + \frac{n+1}{n+2}\right)^2} \sim -\frac{2}{N^2} \sim -10^{-3} \quad \Rightarrow \text{ In agreement with Planck:}$$

$$\frac{\mathrm{d}n_s}{\mathrm{d}\ln k} = -0.003 \pm 0.007$$

Inflationary energy scale:

$$\sqrt{\mathcal{P}_{\zeta}} = rac{1}{2\sqrt{3}\pi} rac{V^{3/2}}{m_{P}^{3}|V'|}$$

$$\left(\frac{M}{m_P}\right)^2 = 4\sqrt{3}(n-1)\alpha^{-\frac{n}{n+2}}\pi\sqrt{\mathcal{P}_{\zeta}}\left[2(n-1)(n+2)\left(N + \frac{n+1}{n+2}\right)\right]^{-\frac{n+1}{n+2}}$$

$$\sqrt{\mathcal{P}_{\zeta}} = 4.706 \times 10^{-5} \qquad \Rightarrow M = 7.7 \times 10^{15} \,\mathrm{GeV}$$

 $n = 2 \& \alpha = 1 \& N = 60$

~ GUT scale

Conclusions

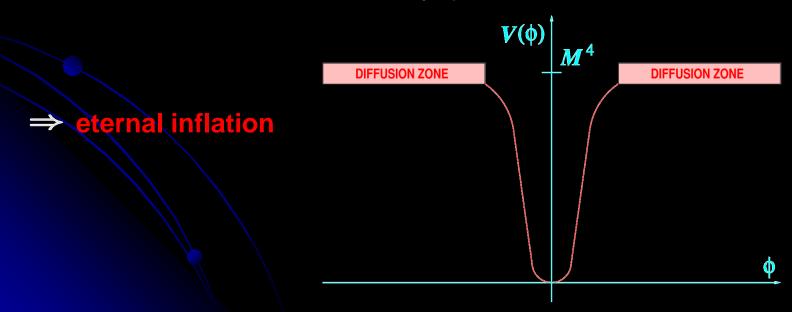
- Planck data suggest single field inflation, characterized by a scalar potential which approaches an inflationary plateau
- In contrast to many other successful models, Shaft Inflation approaches this plateau in a power-law manner
- Shaft Inflation is based on a simple superpotential: $W = M^2(\Phi^n + m^n)^{1/n}$
- Without any fine tunning ($M \sim \text{GUT}$ and $m \sim m_P$) Shaft Inflation produces a scalar spectral index very close to the Planck sweet spot with very small (negative) running, in agreement with Planck
- Rendering m mildly super-Planckian one can easily obtain potentially observable tensors without affecting the spectral index
- The challenge in now to obtain realistic setups which can realise the simple Shaft Inflation superpotential

Eternal Inflation

- For a large inflaton, slow-roll can last for a huge number of e-folds
- The vacuum density in now constant and remains sub-Planckian:

$$V(\phi\gg m)\simeq M^4$$
 with $M\ll m_P$

 Far from the shaft, the inflaton is in the quantum diffusion zone where its variation is dominated by quantum fluctuations



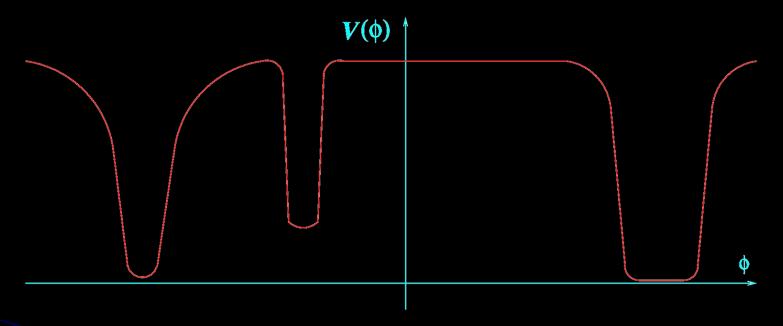
Eternal Inflation

For quantum diffusion to dominate over the classical field variation:

$$|\dot{\phi}| \gtrsim rac{\delta \phi}{\delta t} \Leftrightarrow |V'| \gtrsim rac{3}{2\pi} H^3 \qquad ext{where} \qquad \delta \phi = H/2\pi \quad \delta t = H^{-1} \ 3H\dot{\phi} \simeq -V' \quad V(\phi) \simeq 3(Hm_P)^2 \ \Rightarrow \quad rac{N}{N_*} \simeq rac{N+rac{n+1}{n+2}}{N_*+rac{n+1}{n+2}} \lesssim \left(\sqrt{\mathcal{P}_\zeta}
ight)^{-rac{n+2}{n+1}} \sim 10^{4-6} \ ext{with} \quad N_* \simeq 60 \quad ext{and also noting that} \quad 1 < rac{n+2}{n+1} < rac{3}{2}$$

 After exiting the diffusion zone, slow-roll inflation takes over for a few million e-folds before the cosmological scales exit the horizon (and ~ 60 e-folds afterwards). Eventually, inflation ends and the inflaton oscillates at the bottom of the shaft, leading to (p)reheating and the hot big bang.

Shaft Inflation and the Multiverse



- There may be many shafts (with possibly different values of n) puncturing the inflationary plateau (leading to different vacua).
- Some regions of the multiverse are close to the shafts so that eternal inflation is superseded by slow-roll, which attracts the inflaton the shaft in question. Our observable Universe is such a case.
- Meanwhile, elsewhere in the Multiverse, eternal inflation continues...