Cosmological Collider Physics

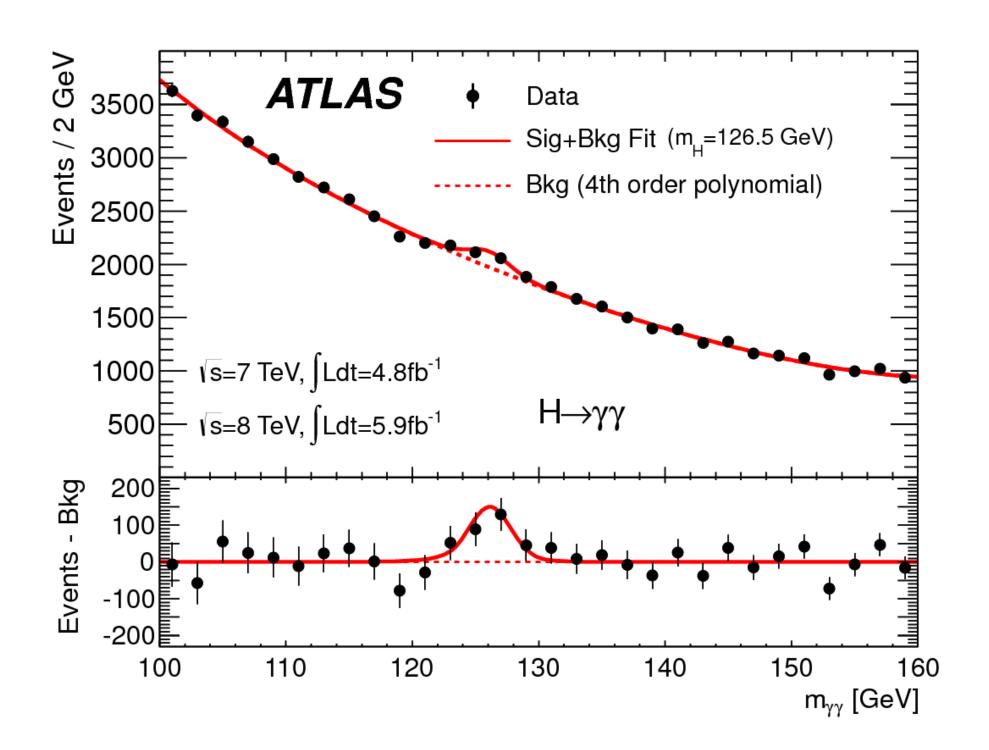
COSMO 2015

Warsaw

Juan Maldacena IAS

Based on: N. Arkani-Hamed and JM, arXiv: 1503.0804

- According to inflationary theory cosmological perturbations have a quantum mechanical origin.
- They were created during inflation


$$T \sim \frac{H}{2\pi}$$
, $3M_{pl}^2H^2 = V$

- Relevant modes have energies of order H.
- Hubble scale could be as high as 10¹⁴ Gev!

- New particles and their interactions during inflation → leave a small imprint on the perturbations.
- We need to do the ``collider physics'', i.e. go from the signatures to the basic interactions.

 How do we recognize new particles, measure their masses and spins?

In flat space

In Cosmology

Non-Gaussianities

Study non-gaussianities in the cosmological correlators.

- Can be produced by self interactions of the inflaton. $\int (\nabla \phi)^2 + \lambda (\nabla \phi)^4$
- There are interesting patterns produced by new particles.

$$\int (\nabla \phi)^2 + (\nabla \sigma)^2 + m^2 \sigma^2 + \lambda \sigma (\nabla \phi)^2$$

Analogy

Cosmology

Hadrons

galaxies

Hadronization

Structure formation

Energy correlators

correlators of primordial density fluctuations.

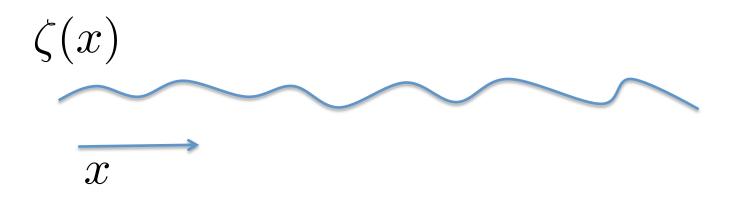
Weak coupling at high energies

weak coupling during inflation

Approximate scale invariance = approximate scale invariance of wavefunction = approximate de-Sitter invariance.

OPE of energy correlators

squeezed limits of primordial correlators.


Time → scale

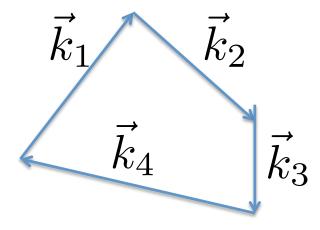
= time \rightarrow scale

Both are controlled by (slightly broken) conformal symmetry

Basic Observable

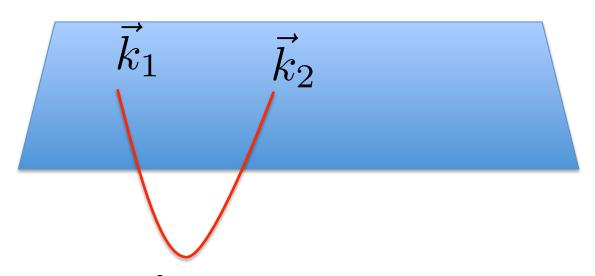
Primordial Curvature Perturbations

$$\langle \zeta(x_1) \cdots \zeta(x_n) \rangle$$


Kinematics

$$\langle \zeta(x_1)\zeta(x_2)\cdots\zeta(x_n)\rangle \to \langle \zeta(k_1)\cdots\zeta(k_n)\rangle$$

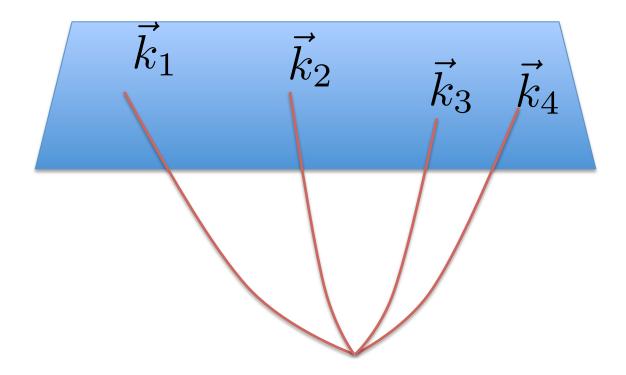
Fourier transform \rightarrow set of momenta


Statistical homogeneity of the universe → Momentum conservation

This is similar to amplitudes. But no ``energy conservation".

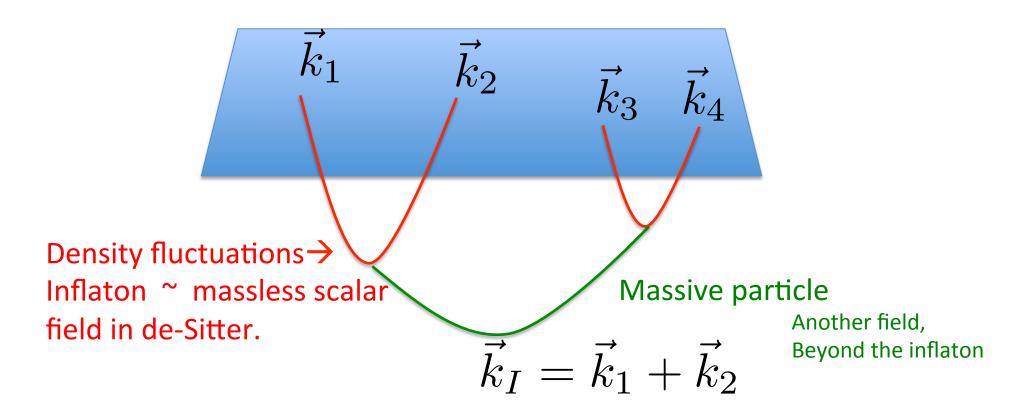
First assume exact de Sitter symmetry

Leading effect


Two point function

$$\langle \phi_{\vec{k}_1} \phi_{\vec{k}_2} \rangle = \frac{H^2}{k_1^3} \delta^3(\vec{k}_1 + \vec{k}_2)$$

$$\langle \phi(0)\phi(x)\rangle \sim H^2 \log|x| + \cdots$$


Four point function

From self interactions

Four point function

 From a new massive particle existed during inflation, m of order H.

Squeezed limit

$$k_I = |k_I| \ll |\vec{k}_i| = k_i$$
, $i = 1, 2, 3, 4$

$$\vec{k}_1 \vec{k}_2$$
 $\vec{k}_3 \vec{k}_4$

Chen, Wang, (quasi single field), Noumi, Yamaguchi, Yokoyama, Assassi, Baumann, Green, Senatore, Silverstein, Zaldarriaga, Suyama, Yamaguchi,...

$$egin{align} ec{k_I} & ec{k_I} \ \dfrac{\langle 4pt
angle}{\langle 2pt
angle^2} \propto \dfrac{1}{k_I^3} \left[\left(\dfrac{k_I^2}{k_1 k_3}
ight)^{rac{3}{2} + i \mu} e^{i \delta} + c.c.
ight] \end{aligned}$$

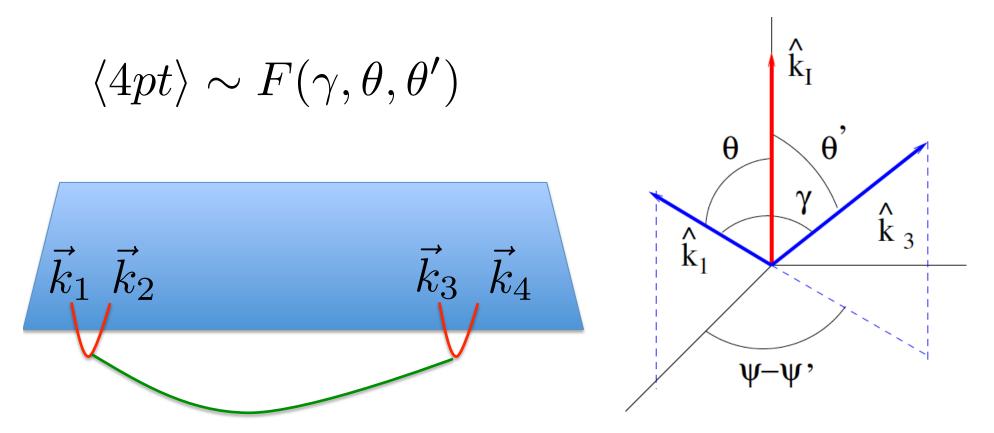
This non-trivial power of $k_1 \rightarrow signature$ of a new physical particle. Not obtained from self interactions.

$$\frac{\langle 4pt \rangle}{\langle 2pt \rangle^2} \sim e^{-\pi \mu} \frac{1}{k_I^3} \left[\left(\frac{k_I^2}{k_1 k_3} \right)^{\frac{3}{2} + i\mu} e^{i\delta} + c.c. \right]$$

$$ec{k}_1 ec{k}_2$$
 $ec{k}_3 ec{k}_4$

$$\mu = \sqrt{m^2/H^2 - 9/4}$$

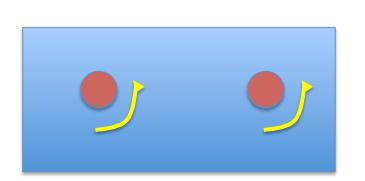
We see clear oscillations a function of the log of the ratio of scales

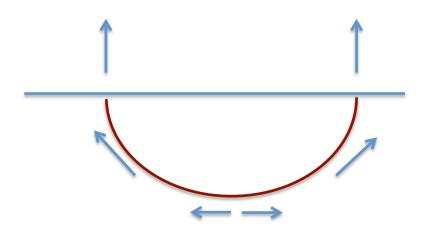

Boltzman suppression
$$e^{-\pi\mu}$$
 vs. $1/(\mu)^k$

Interference effect:
$$\Psi_{
m nopair} + e^{-\pi\mu} \Psi_{
m pair}$$

Phase is a function of the mass.

Interesting test of the quantum nature of fluctuations.


Spin



Further evidence of quantum mechanics! \rightarrow View it as a measurement of the correlated spins of pair of produced particles.

There is a constraint on their masses.

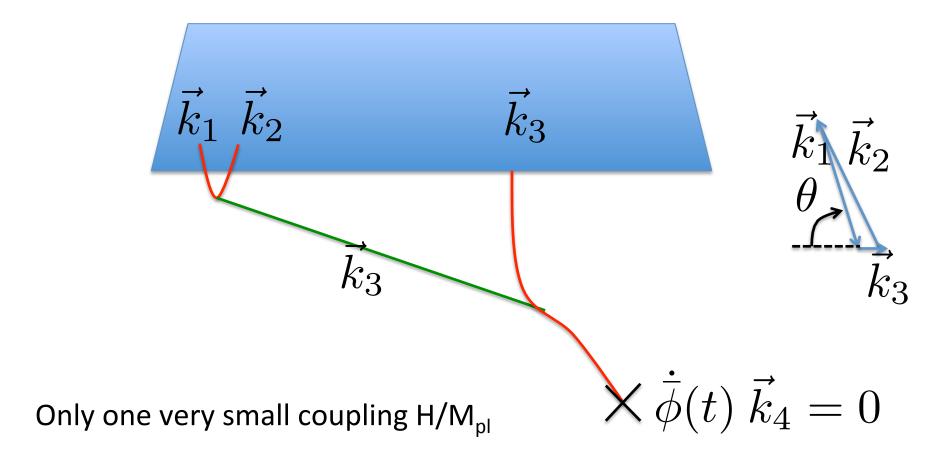
Spin

$$\langle \epsilon_1^s.O\epsilon_2^s.O\rangle \sim \frac{[\epsilon_1.\epsilon_2 - 2(\epsilon_1.\hat{x})(\epsilon_2.\hat{x})]^s}{|x|^{2\Delta}}$$

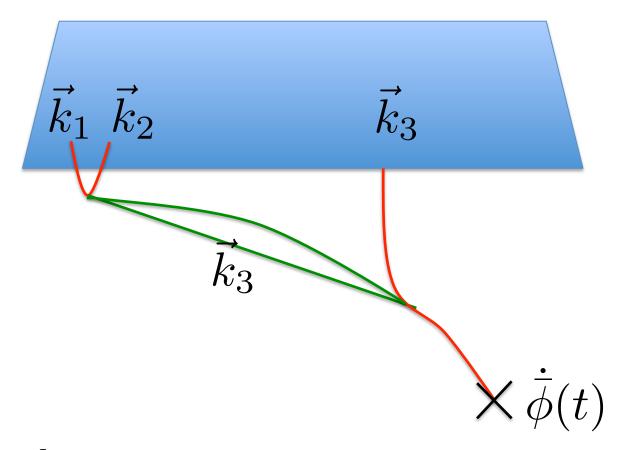
Overall size estimate

$$\frac{\langle 4pt \rangle}{\langle 2pt \rangle^2} \sim \frac{H^2}{M_{pl}^2} \frac{e^{-\pi \mu}}{k_I^3} \left[\left(\frac{k_I^2}{k_1 k_3} \right)^{\frac{3}{2} + i\mu} e^{i\delta} + c.c. \right]$$

Overall size is small.
$$\lambda \sim 1/M_{pl}$$

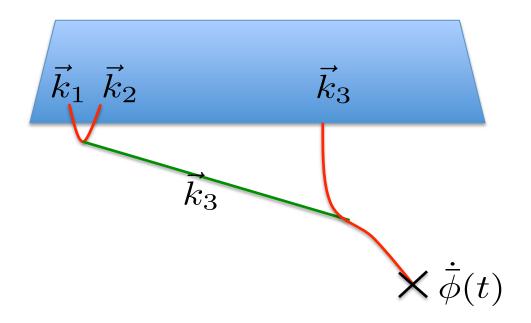

One factor of H/M from each interaction.

Can we find a bigger effect?


Three point functions

- Consider instead the inflationary background.
- Now, we have a time dependent background

$$\phi(t)$$



$$\langle 3pt \rangle \propto \frac{\dot{\bar{\phi}}}{k_1^3 k_3^3} e^{-\pi \mu} \left[\left(\frac{k_3}{k_1} \right)^{\frac{3}{2} + i \mu} e^{i \delta} + c.c. \right] P_s(\cos \theta)$$

Loops \rightarrow give rise to a faster decay

$$\left(\frac{k_3}{k_1}\right)^{3+2i\mu}$$

Story: Particle is created by long wave mode k_3 . It then decays. We see interference between decay products and the original unperturbed state.

A striking evidence of quantum mechanics.

Phase of oscillation is calculable!.

Cosmological double slit experiment

Finding massive particles

- Collider

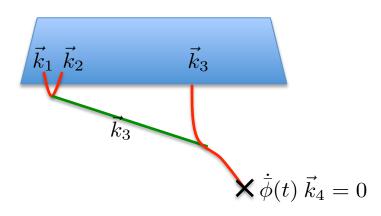
 peaks in the invariant mass distribution.
- Cosmology → peaks in the Fourier transform of the cosmological correlator as a function of

$$\ell = \log(k_{short}/k_{long})$$

Spin → angular dependence.

How difficult is it to detect?

Compare it with the standard 3pt function


 The standard 3 point function can be viewed as exchanging a graviton. Kundu, Shukla, Trivedi

Planck:

$$|f_{NL}^{\text{experimental}}| \lesssim 5$$
, $f_{NL}^{\text{standard}} \sim (n_s - 1)$

$$f_{NL}^{\rm standard} \sim (n_s - 1)$$

JM

How difficult is it to detect?

This one has extra factors of

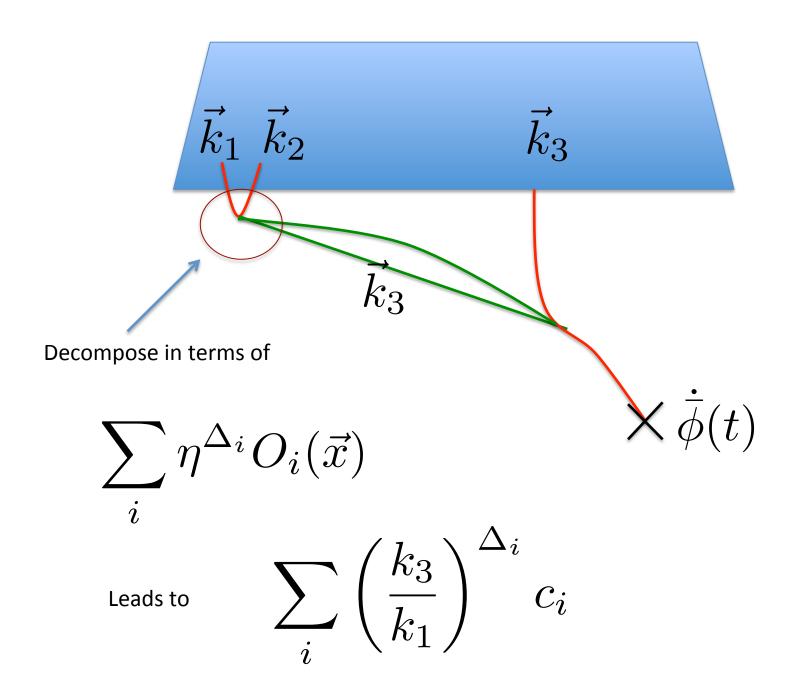
$$(\lambda M_{pl})^2 e^{-\pi \mu} \left(\frac{k_3}{k_1}\right)^{3/2 + i\mu} \sum_{\vec{k}_1, \vec{k}_2, \dots, \vec{k}_3, \dots, \vec{k}_4 = 0}^{\vec{k}_1, \vec{k}_2, \dots, \vec{k}_3}$$

- The last two suppress the signal. So the number of modes has to grow like the square of the above factor.
- The interactions could be larger than gravitational!

De Sitter isometries and conformal symmetry

$$ds^{2} = \frac{-d\eta^{2} + dx^{2}}{\eta^{2}}$$
$$\langle \phi(\eta_{1}, \vec{x}_{1}) \cdots \phi(\eta_{n}, \vec{x}_{n}) \rangle$$

Invariant under de-Sitter isometries.


At late times, de-Sitter isometries act on x as conformal symmetries.

At late times we can often expand

$$\phi \sim \sum_{i} \eta^{\Delta_{i}} O_{i}(\vec{x})$$

Strominger, Witten

3d operator of conformal dimension Δ_i

$$\sum_{i} \left(\frac{k_3}{k_1}\right)^{\Delta_i} c_i$$

Powers that appear: Dimensions of 3d Operators → energies of quasinormal modes in the de-Sitter static patch. Can be complex!

Sensitive to the spectrum of masses in the theory.

Powers in the squeezed limit

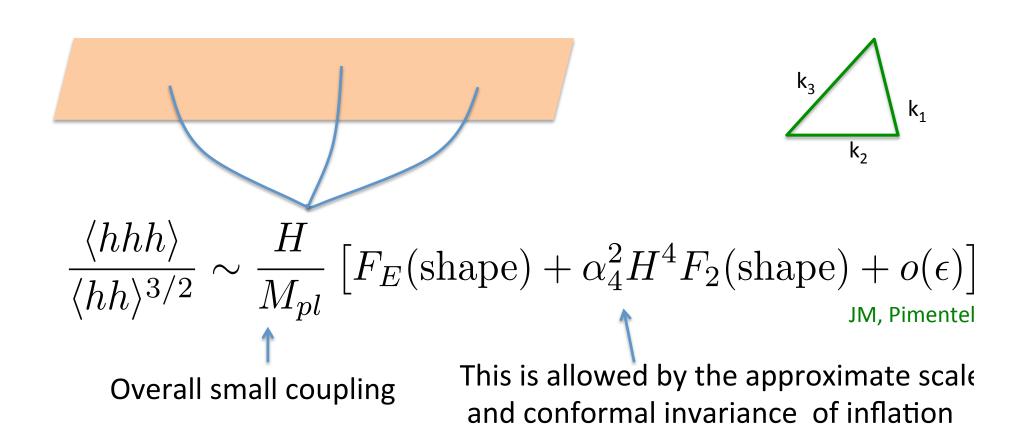
Quasinormal mode spectrum

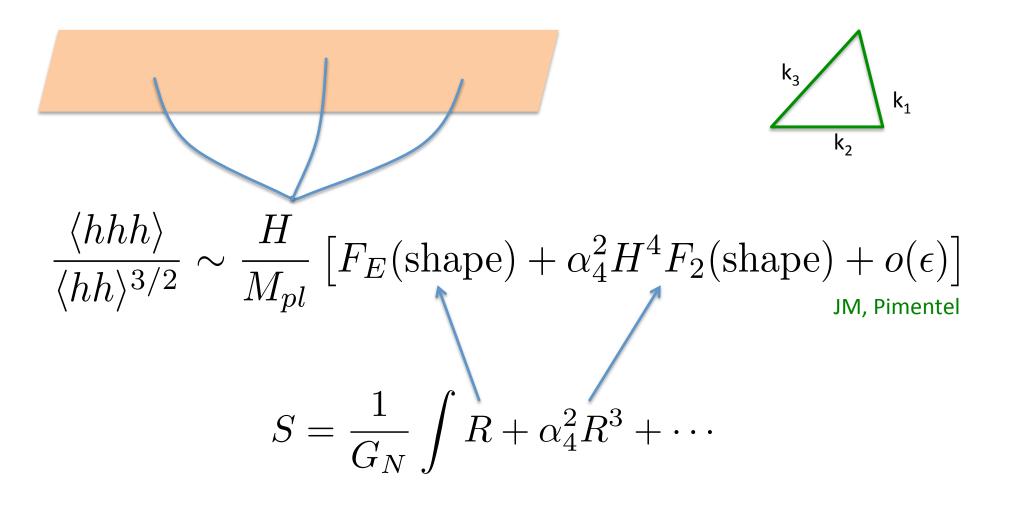
The squeezed region of the correlator, $k_3 << k_1$, k_2 is <u>not</u> where the largest non-gaussian signal lies.

But it is the region containing direct information about the spectrum of the theory.

$$e^{-\pi\mu}$$
 vs. $1/(\mu)^k$ squeezed Leading effect

Very stringy inflation?


- Usual picture: Strings → 10d → KK theory → inflation.
- Another possibility:


$$l_s \lesssim 1/H = R = \text{Hubble radius}$$

- Observations: higher spin massive particles!
- New structures in graviton three point functions.
- I do not know of a concrete stringy model...
- Could be evidence for string theory.

Higher spin (S>2) weakly coupled particles → String theory

Graviton 3pt function

If this is observed + causality of the de-Sitter theory \rightarrow massive higher spin states

This is only power suppressed in I_s H . Camanho, Edelstein, J.M., Zhiboedov

Long string creation \rightarrow suppressed exponentially as $e^{-\frac{2}{(l_s H)^2}}$

Conclusions

- Non gaussianities in cosmological correlators have very interesting information.
- Squeezed limit directly probes the spectrum of the theory during inflation.
- Mass and spin information.
- Very interesting evidence of the quantum nature of the perturbations.
- Could be observable with futuristic experiments... (e.g. 21 cm tomography). (After seeing other non-gaussian signals.)