# **Consistent Metric Combinations in Cosmology of Massive Bigravity**

# Henrik Nersisyan





# Cosmo -15

7-11 September, 2015 Warsaw, Poland

## Motivation

Can we construct a consistent (ghost free) theory of interacting spin 2 fields?

Can we construct a consistent theory for massive graviton?

Can we explain the late time accelration of the univerese trough this modification of GR?

## Massive generalizaton of GR

### Fierz & Pauli (1939):

 $h_{\mu\nu} = g_{\mu\nu} - \eta_{\mu\nu}$ 

(linearized metric fluctuations around flat space-time)

# The only ghost-free mass term:

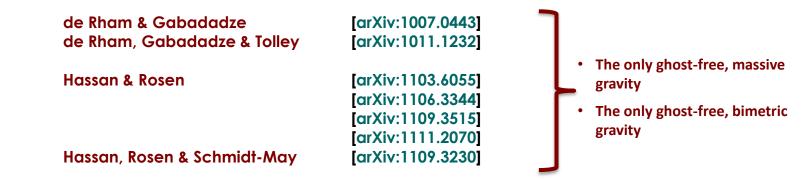
 $\frac{m^2}{4} \left( h_{\mu\nu} h^{\mu\nu} - a \, h^{\mu}_{\mu} h^{\nu}_{\nu} \right) \,, \qquad \text{with} \quad a = 1$ 

There is a vDVZ discontinuity and there is a need of the Vainshtein mechanism.

Non linear theory of massive gravity

Non-linear theories of massive gravity were conjectured to suffer from ghosts.

### 2010-11: breakthrough



Henrik Nersisyan / Institute for Theoretical Physics, Heidelberg University

### **Massive Gravity**

In general it is impossible to construct non trivial interaction terms with only one metric, one has to introduce a second metric

 $g^{\mu\alpha}g_{\alpha\nu} = \delta^{\mu}_{\nu}$ 

The only ghost-free action for a single massive graviton

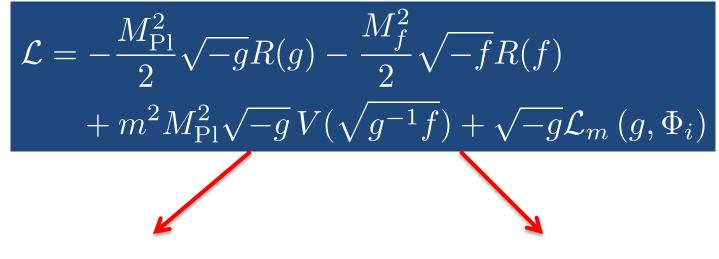
$$S = -M_p^2 \int d^4x \sqrt{-g} R(g) + 2M_p^2 m^2 \int d^4x \sqrt{-g} \sum_{n=0}^3 \beta_n e_n(\sqrt{g^{-1}f})$$

• Where f is called reference metric and is not dynamical. Here  $e_n(X)$  are the elementary symmetric polynomials of the matrix  $X \equiv \sqrt{g^{-1}f}$ 

$$\begin{split} e_0 \left( \mathbb{X} \right) &\equiv 1, \\ e_1 \left( \mathbb{X} \right) &\equiv \left[ \mathbb{X} \right], \\ e_2 \left( \mathbb{X} \right) &\equiv \frac{1}{2} \left( \left[ \mathbb{X} \right]^2 - \left[ \mathbb{X}^2 \right] \right), \\ e_3 \left( \mathbb{X} \right) &\equiv \frac{1}{6} \left( \left[ \mathbb{X} \right]^3 - 3 \left[ \mathbb{X} \right] \left[ \mathbb{X}^2 \right] + 2 \left[ \mathbb{X}^3 \right] \right), \\ e_4 \left( \mathbb{X} \right) &\equiv \det \left( \mathbb{X} \right), \end{split}$$

### **Massive Bigravity**

#### The action of the theory:



*Gives dynamics to the reference metric* 

Admits FLRW backgrounds

V: interaction potential built out of the matrix m: interaction scale/graviton mass  $M_{pl}$ ,  $M_f$ : Planck masses for  $g_{\mu\nu}$  and  $f_{\mu\nu}$  $\beta_{0...4}$ : free parameters of the theory

## Viable models on background level

| Model                                                          | B <sub>0</sub> | B <sub>1</sub> | B <sub>2</sub> | B <sub>3</sub> | B <sub>4</sub> | $\Omega_{\mathbf{m}}$ | $\chi^{2}_{\mathbf{min}}$ | p-value  | log-evidence |
|----------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|-----------------------|---------------------------|----------|--------------|
| $\Lambda \mathrm{CDM}$                                         | free           | 0              | 0              | 0              | 0              | free                  | 546.54                    | 0.8709   | -278.50      |
| $(\mathbf{B_1}, \mathbf{\Omega^0_m})$                          | 0              | free           | 0              | 0              | 0              | free                  | 551.60                    | 0.8355   | -281.73      |
| $(\mathbf{B_2}, \mathbf{\Omega_m^0})$                          | 0              | 0              | free           | 0              | 0              | free                  | 894.00                    | < 0.0001 | -450.25      |
| $(\mathbf{B_3}, \mathbf{\Omega_m^0})$                          | 0              | 0              | 0              | free           | 0              | free                  | 1700.50                   | < 0.0001 | -850.26      |
| $(B_1, B_2, \Omega^0_m)$                                       | 0              | free           | free           | 0              | 0              | free                  | 546.52                    | 0.8646   | -279.77      |
| $(\mathbf{B_1},\mathbf{B_3},\mathbf{\Omega_m^0})$              | 0              | free           | 0              | free           | 0              | free                  | 542.82                    | 0.8878   | -280.10      |
| $(\mathbf{B_2},\mathbf{B_3},\mathbf{\Omega_m^0})$              | 0              | 0              | free           | free           | -0             | free                  | <u>548.04</u>             | 0.8543   | 280.91       |
| $(B_1, B_4, \Omega^0_m)$                                       | 0              | free           | 0              | 0              | free           | free                  | 548.86                    | 0.8485   | -281.42      |
| $(\mathbf{B_2},\mathbf{B_4},\mathbf{\Omega_m^0})$              | 0              | 0              | free           | 0              | free           | free                  | 806.82                    | < 0.0001 | -420.87      |
| $(\mathbf{B_3},\mathbf{B_4},\mathbf{\Omega_m^0})$              | -0             | -0             | -0             | free           | free           | free                  | 685.30                    | 0.0023   | -351.14      |
| $(B_1,B_2,B_3,\Omega_m^0)$                                     | 0              | free           | free           | free           | 0              | free                  | 546.50                    | 0.8582   | -279.61      |
| $(B_1, B_2, B_4, \Omega_m^0)$                                  | 0              | free           | free           | 0              | free           | free                  | 546.52                    | 0.8581   | -279.56      |
| $(\mathbf{B_1},\mathbf{B_3},\mathbf{B_4},\mathbf{\Omega_m^0})$ | 0              | free           | 0              | free           | free           | free                  | 540.78                    | 0.8563   | -280.00      |
| $(\mathbf{B_2},\mathbf{B_3},\mathbf{B_4},\mathbf{\Omega_m^0})$ | 0              | 0              | free           | free           | free           | free                  | 549.68                    | 0.8353   | -282.89      |
| $(B_1,B_2,B_3,B_4,\Omega_m^0)$                                 | 0              | free           | free           | free           | free           | free                  | 546.50                    | 0.8515   | -279.60      |
| full bigravity model                                           | free           | free           | free           | free           | free           | free                  | 546.50                    | 0.8445   | -279.82      |

$$\bullet~$$
 Where  $~B_i\equiv \frac{m^2}{H_0^2}\beta_i$ 

Y. Akrami, T. Koivisto, M. Sandstad [arXiv:1209.0457]

F. Könnig, A. Patil, L. Amendola [arXiv:1312.3208]

### **Features and Achievements**

Gives a dynamical dark energy model.

Phantom behaviour is common (w < -1).

Possible non-GR signatures at background level and in structure formation.

Technically natural dark energy candidate .

### **Problems**

*Single Coupling: Only one metric describes space-time (directly couples to matter)* 

Finite Branch: Scalar perturbations are plugged by early-time gradient instabilities.

Infinite Branch: Vacuum decays immediately because of ghosts.

## Ways Out

#### Cure gradient instabilities nonlinearly (Vainshtein mechanism)

E.Mörtsell, J. Enander arXiv:1506.04977

K. Aoki, K. Maeda, R. Namba arXiv:1506.04543

#### Non-FRLW backgrounds

HN, Y. Akrami, L. Amendola arXiv:1502.03988

### Doubly coupled bigravity, but there are problems

Y. Akrami, T. Koivisto, D. Mota, M. Sandstad arXiv:1306.0004

Y. Akrami, T. Koivisto, A. Solomon arXiv:1404.0006

#### Plank mass hierarchy for two metrics

Y. Akrami, S.F. Hassan, F. Könnig, A. Schmidt-May, A. Solomon arXiv:1503.07521

Other modifications of the theory (Quasidilaton, Varying mass, Lorentz violation, F(R)-bigravity, trigravity ...)

## Possible metric combinations

#### **FRLW-FRLW:**

#### (homogenous-homogenous)

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^{2} + a^{2}(t) d\vec{x_{g}}^{2},$$
  
$$f_{\mu\nu}dx^{\mu}dx^{\nu} = -X^{2}(t) dt^{2} + b^{2}(t) d\vec{x_{f}}^{2},$$

Where 
$$d\vec{x_g}^2 = \frac{dr^2}{1 - k_g r^2} + r^2 \left( d\theta^2 + \sin^2(\theta) \, d\phi^2 \right),$$
  
 $d\vec{x_f}^2 = \frac{dr^2}{1 - k_f r^2} + r^2 \left( d\theta^2 + \sin^2(\theta) \, d\phi^2 \right),$ 

### FRLW- Lemaître:

#### (homogenous-inhomogenous)

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^{2} + a^{2}(t) d\vec{x_{g}}^{2},$$
  
$$f_{\mu\nu}dx^{\mu}dx^{\nu} = -X^{2}(t,r) dt^{2} + Y^{2}(t,r) dr^{2} + Z^{2}(t,r) r^{2}d\Omega^{2},$$

#### LTB-LTB:

#### (inhomogenous-inhomogenous)

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^{2} + A^{2}(t,r)dr^{2} + B^{2}(t,r)d\Omega^{2},$$
  
$$f_{\mu\nu}dx^{\mu}dx^{\nu} = -X^{2}(t)dt^{2} + Y^{2}(t,r)dr^{2} + Z^{2}(t,r)d\Omega^{2},$$

### **Bianchi I-FRLW:**

#### (anisotropic-isotropic)

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^{2} + a_{1}^{2}(t) dx^{2} + a_{2}^{2}(t) dy^{2} + a_{3}^{2}(t) dz^{2},$$
  
$$f_{\mu\nu}dx^{\mu}dx^{\nu} = -X^{2}(t) dt^{2} + b^{2}(t) d\vec{x}^{2},$$

# **Possible combinations**

#### HN, Y. Akrami, L. Amendola arXiv:1502.03988

| Metric combinations            |                                 |                |                       |                          |  |  |  |  |  |
|--------------------------------|---------------------------------|----------------|-----------------------|--------------------------|--|--|--|--|--|
| $g_{\mu\nu}$ (physical metric) | $f_{\mu\nu}$ (reference metric) | $T^g_{\mu\nu}$ | Possibility           | Reference                |  |  |  |  |  |
| FLRW $(k)$                     | FLRW $(k)$                      | PF             | $\checkmark$          | Standard                 |  |  |  |  |  |
| $FLRW(k_g)$                    | FLRW $(k_f)$                    | PF             | ×                     | Present work             |  |  |  |  |  |
| FLRW                           | LEMAÎTRE                        | PF             |                       | Present work             |  |  |  |  |  |
| FLRW                           | LEMAÎTRE                        | Inhom.         | $\checkmark$          | Present work & Ref. [26] |  |  |  |  |  |
| LEMAÎTRE                       | FLRW                            | Any            | ×                     | Present work             |  |  |  |  |  |
| FLRW                           | LTB                             | Any            | ×                     | Present work             |  |  |  |  |  |
| LTB                            | FLRW                            | Any            | ×                     | Present work             |  |  |  |  |  |
| LTB                            | LTB                             | PF             | √ <sup>a</sup>        | Present work             |  |  |  |  |  |
| Bianchi I                      | FLRW                            | Any            | ×                     | Present work             |  |  |  |  |  |
| FLRW                           | Bianchi I                       | PF             | ×                     | Present work             |  |  |  |  |  |
| FLRW                           | Bianchi I                       | Aniso.         | $\checkmark$          | Present work             |  |  |  |  |  |
| Bianchi Class A                | Bianchi Class A                 | PF             | $\checkmark$          | Refs. [30, 74]           |  |  |  |  |  |
| Perturbed FLRW                 | Perturbed FLRW                  | Perturbed PF   | $\checkmark$          | Standard                 |  |  |  |  |  |
| Perturbed FLRW (scalars)       | Unperturbed FLRW (scalars)      | Perturbed PF   | × <sup>b</sup>        | Present work             |  |  |  |  |  |
| Unperturbed FLRW (scalars)     | Perturbed FLRW (scalars)        | Perturbed PF   | $\times^{\mathrm{b}}$ | Present work             |  |  |  |  |  |
| Perturbed FLRW (tensors)       | Unperturbed FLRW (tensors)      | Perturbed PF   | ×                     | Present work             |  |  |  |  |  |
| Unperturbed FLRW (tensors)     | Perturbed FLRW (tensors)        | Perturbed PF   | ×°                    | Present work             |  |  |  |  |  |

#### Henrik Nersisyan / Institute for Theoretical Physics, Heidelberg University

### Cosmological implementation of a viable combinations

#### FRLW-FRLW':

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^{2} + a^{2}\left(t\right)\left[\frac{dr^{2}}{1 - k_{g}r^{2}} + r^{2}\left(d\theta^{2} + \sin^{2}\left(\theta\right)d\phi^{2}\right)\right],$$

$$f_{\mu\nu}dx^{\mu}dx^{\nu} = -\tilde{X}^{2}\left(\tilde{t}\right)d\tilde{t}^{2} + \tilde{b}^{2}\left(\tilde{t}\right)\left[\frac{d\tilde{r}^{2}}{1 - k_{f}\tilde{r}^{2}} + \tilde{r}^{2}\left(d\tilde{\theta}^{2} + \sin^{2}\left(\tilde{\theta}\right)d\tilde{\phi}^{2}\right)\right]$$

$$\tilde{t} = f\left(t, r\right)$$

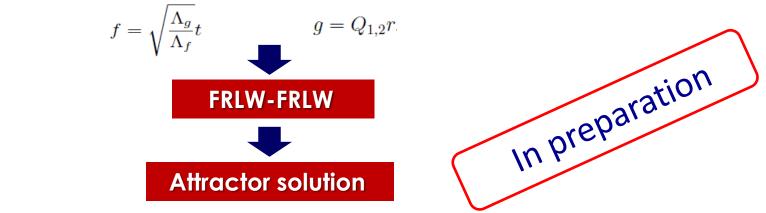
$$\tilde{r} = g\left(t, r\right)$$

$$d\tilde{s}_{q}^{2} = -dt^{2} + a^{2}dr^{2} + a^{2}r^{2}d\Omega^{2}$$

$$d\tilde{s}_{f}^{2} = -\left(X^{2}\dot{f}^{2} - b^{2}\dot{g}^{2}\right)dt^{2} + 2\left(b^{2}g'\dot{g} - X^{2}f'\dot{f}\right)dtdr + \left(b^{2}g'^{2} - X^{2}f'^{2}\right)dr^{2} + b^{2}g^{2}d\Omega^{2}$$

#### Attractor solution:

At the late times of cosmological evolution, the transformation functions will be



Henrik Nersisyan / Institute for Theoretical Physics, Heidelberg University

### Summary



- Option 1: cure gradient instability nonlinearly?
- Option 2: other backgrounds
- *Option 3: can couple both metrics to matter*
- *Option 4: take small f-metric Planck mass*



*Option 5: other theories (modifications/generalizations)* 



### The possibility of different metric combinations

#### **Equations of Motion:**

$$G_{\mu\nu}(g) + m^2 V_{\mu\nu}^g = \frac{1}{M_{\rm Pl}^2} T_{\mu\nu},$$
  
$$\alpha^2 G_{\mu\nu}(f) + m^2 V_{\mu\nu}^f = 0,$$

• Where 
$$\alpha \equiv \frac{M_f}{M_{\rm Pl}}$$

#### Ricci identities + energy-momentum conservation:

