# A convergent perturbation theory for Newtonian

## cosmological structure formation

September 11 2015

COSMO15

**Cornelius Rampf** 

Based on:

- V. Zheligovsky & U. Frisch, J. Fluid Mech. 749 (2014) 404
- CR, B. Villone & U. Frisch, Mon. Not. Roy. Astron. 452 (2015) 1421
- CR, A. Sobolevskiĭ, U. Frisch, work in progress





- Starting point: Dark matter evolution in  $\Lambda CDM$  is governed by **Euler-Poisson equations** until first shell-crossing
- how to obtain perturbative solutions to arbitrary high accuracy?
- revisit perturbation expansion it's a time-Taylor series!
   valid for some time range, then re-expand, continue evolution
- Taylor series representation of fully non-linear particle trajectories
- practical realisation e.g. with a semi-Lagrangian method

## Do we need so high accuracy?



#### cosmological reconstruction

to trace the whole past dynamical history of the LSS

• Analytical evidence of shell crossing: (when?)

| time | Single stream | Multi<br>stream |
|------|---------------|-----------------|
|------|---------------|-----------------|

# Quick recap of EoMs



Euler-Poisson equations:

$$egin{aligned} \partial_a oldsymbol{v} + (oldsymbol{v} \cdot 
abla^{ ext{E}})oldsymbol{v} &= -rac{3}{2a} \left(oldsymbol{v} + 
abla^{ ext{E}} arphi_{ ext{g}}
ight) \ \partial_a \delta + 
abla^{ ext{E}} \cdot \left[(1+\delta)oldsymbol{v}\right] &= 0 \ \nabla_{ ext{E}}^2 arphi_{ ext{g}} &= rac{\delta}{a} \ \end{array}$$
 here: EdS

cosmic scale factor (= modified time variable) a, satisfies Friedmann equations

density contrast  $\ \delta = (
ho - ar
ho)/ar
ho$ , and  $\ arphi_{g}$  (rescaled) cosmological potential

## The Lagrangian description

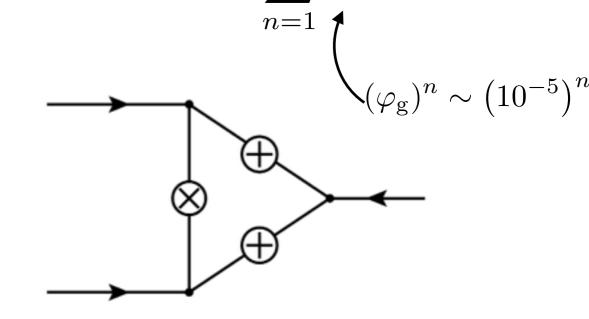
transform to Lagrangian space:  $\boldsymbol{q} \mapsto \boldsymbol{x}(\boldsymbol{q}, a) = \boldsymbol{q} + \boldsymbol{\xi}(\boldsymbol{q}, a)$  $\boldsymbol{v} = \partial_a^{\mathrm{L}} \boldsymbol{x}(\boldsymbol{q}, a)$  Jacobian  $J = \det \left( \nabla_i^{\mathrm{L}} x_j \right)$ 

$$\partial_{aa}^{\rm L} \boldsymbol{x} = -\frac{3}{2a} \left( \partial_{a}^{\rm L} \boldsymbol{x} + \nabla_{x} \varphi_{\rm g} \right)$$
$$(1+\delta)J = 1$$
$$\nabla_{x}^{2} \varphi_{\rm g} = \frac{\delta}{a}$$



## Approximative techniques in literature

- Eulerian or Lagrangian perturbation theory: assume that density contrast, peculiar velocity field, etc. are small
  - → approximate fields without (really) specifying the expansion parameter, e.g.:  $\delta(x, a) = \sum_{n=1}^{\infty} \delta^{(n)}(x) a^n$ 
    - Ioop expansion to get statistical information of density, etc.



 Many extensions exist: renormalisation, resummation, EFTofLSS, ...
 7
 7
 Cornelius Rampf

## Limitations of such techniques



- No control of shell-crossing, i.e., no "idea" when exactly the fluid description breaks down in 3D!
- perturbation theory in its weakest formulation:
   only approximative, because it is unknown if the conventional perturbation series is converging

To overcome limitations, need rethinking of perturbation theory

(be prepared that results might appear suddenly unknown!!)

## From approximative to **exact** solutions

- One possibility to obtain solutions to arbitrary high accuracy:
- 1. choose appropriate time and expansion parameter (e.g., a or D)
- 2. derive explicit all-order recursion relations
- prove that the respective series is converging (with it comes a validity regime)
- 4. use e.g. a semi-Lagrangian approach to obtain
   fully non-linear solutions of Euler-Poisson eqs.
   (until shell-crossing)



#### Exact solutions for the Lagrangian displacement

[Zheligovsky&Frisch'14]

- **Solution** Sector Sect
- $\boldsymbol{\xi}(\boldsymbol{q}, a) = \sum_{n=1}^{\infty} \boldsymbol{\xi}^{(n)}(\boldsymbol{q}) a^n \quad \text{Taylor series!!} \text{ here around } a=0$  $\boldsymbol{\varnothing} \text{ (simple!!) all-order recursion relations}$

✓ series expansion is an exact solution for (here EdS)

 $0 \le a \le T^{\text{EdS}} = \frac{0.0204}{||\boldsymbol{\nabla}^{\text{L}} \boldsymbol{v}^{(\text{init})}||} \longleftarrow \text{norm of initial velocity gradients}$ 

If displace particles from a = 0 until  $T^{\text{EdS}}$  (as the **first** step!) [CR, Villone&Frisch'15] **—** generalisation to  $\Lambda$ CDM and beyond



## Recursion relations for $\Lambda CDM$

$$\begin{split} \nabla^{\mathrm{L}}_{\mu}\xi^{(s)}_{\nu} &= \nabla^{\mathrm{L}}_{\mu}v^{(\mathrm{init})}_{\nu}\delta^{s}_{1} - \Lambda\frac{s-3}{s+3/2}\mathcal{C}_{\mu\nu}\mu^{(s-3)}_{1} + \sum_{\substack{1 \leq j \leq 3, \\ j \neq \nu}}\mathcal{C}_{\mu j}\left(\sum_{\substack{1 \leq k \leq 3, \\ 0 < n < s}} \frac{2n-s}{s} \left(\nabla^{\mathrm{L}}_{\nu}\xi^{(n)}_{k}\right)\nabla^{\mathrm{L}}_{j}\xi^{(s-n)}_{k}\right) \\ &+ \mathcal{C}_{\mu\nu}\left(\sum_{0 < n < s}\left\{\frac{(3-s)/2 - n^{2} - (s-n)^{2}}{(s+3/2)(s-1)}\mu^{(n,s-n)}_{2} + \Lambda\frac{4s-n^{2} - (s-n)^{2} - 6}{(s+3/2)(s-1)}\mu^{(n,s-n-3)}_{2}\right\} \\ &+ \sum_{n_{1}+n_{2}+n_{3}=s}\left\{\frac{(3-s)/2 - n^{2}_{1} - n^{2}_{2} - n^{2}_{3}}{(s+3/2)(s-1)}\mu^{(n_{1},n_{2},n_{3})}_{3} + \Lambda\frac{4s-9 - n^{2}_{1} - n^{2}_{2} - n^{2}_{3}}{(s+3/2)(s-1)}\mu^{(n_{1},n_{2},n_{3}-3)}_{3}\right\} \end{split}$$

 $\mu,\nu,i,j=1,2,3$ 

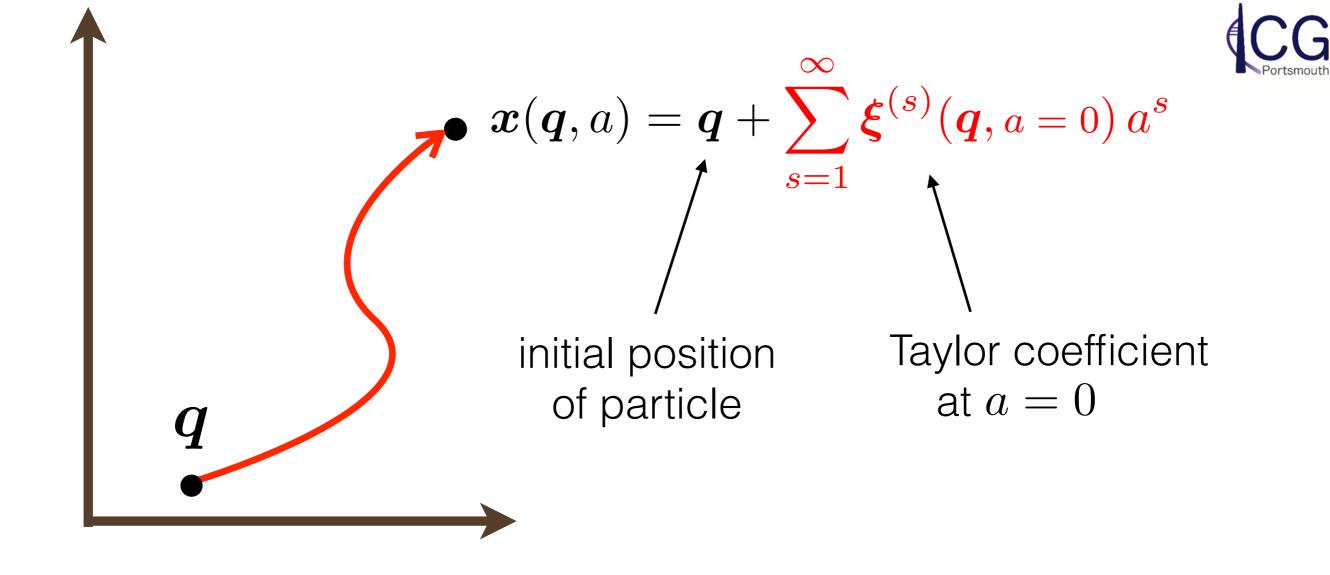
$$\boldsymbol{\xi}^{(s)}(\boldsymbol{q})$$

$$\boldsymbol{\xi}(\boldsymbol{q}, a) = \sum_{s=1}^{\infty} \boldsymbol{\xi}^{(s)}(\boldsymbol{q})$$



 $\mathcal{C}_{ij} = \nabla^{-2} \nabla_i^{\mathrm{L}} \nabla_i^{\mathrm{L}}$ 

 $a^s$ 

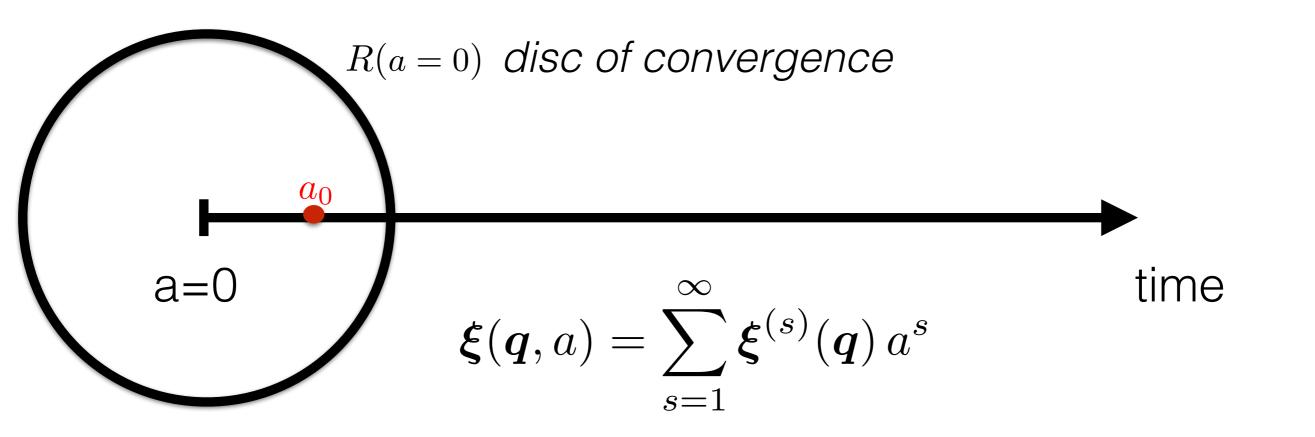


- pushing the initial time up to a = 0 is a consequence of our treatment (-> CMB physics reduced to simple boundary conditions)
- fully non-linear trajectories from  $0 \le a \le T^{\text{EdS}} = \frac{0.0204}{||\boldsymbol{\nabla}^{\text{L}} \boldsymbol{v}^{(\text{init})}||}$
- how to obtain trajectories beyond the radius of convergence?

#### **Analytic continuation:** <sup>[CR,Sobolevskiĭ&Frisch, work in progress]</sup> a semi-Lagrangian approach for all-time solutions

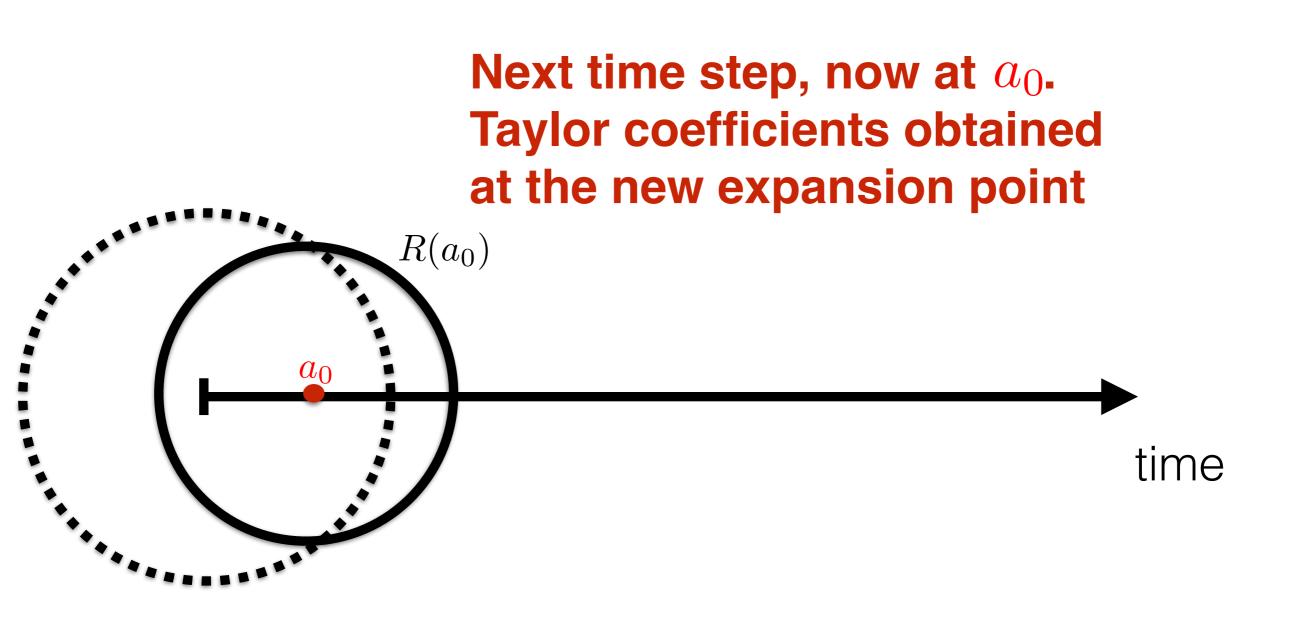
choose  $0 < a_0 < R$ .

Numerically, the larger  $a_0$ , the more Taylor coefficients are required



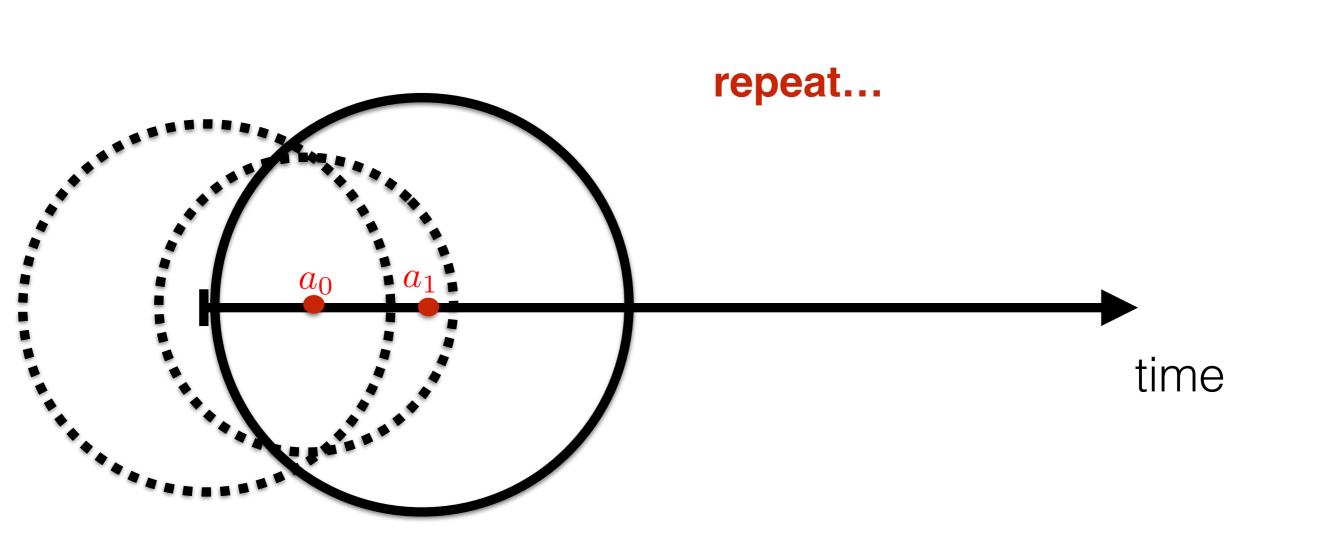
Evolve until  $a_0$ . Then transform back to Eulerian coordinates to initiate a fresh start

Analytic continuation: [CR,Sobolevskiĭ&Frisch, work in progress] a semi-Lagrangian approach for all-time solutions



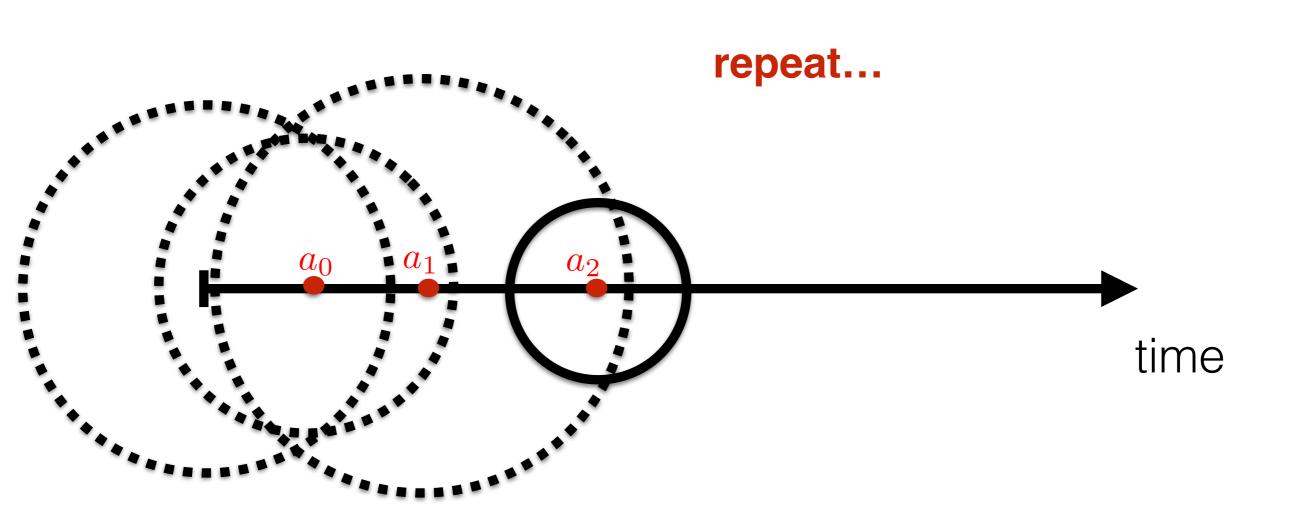


#### Analytic continuation: [CR,Sobolevskiĭ&Frisch, work in progress] a semi-Lagrangian approach for all-time solutions



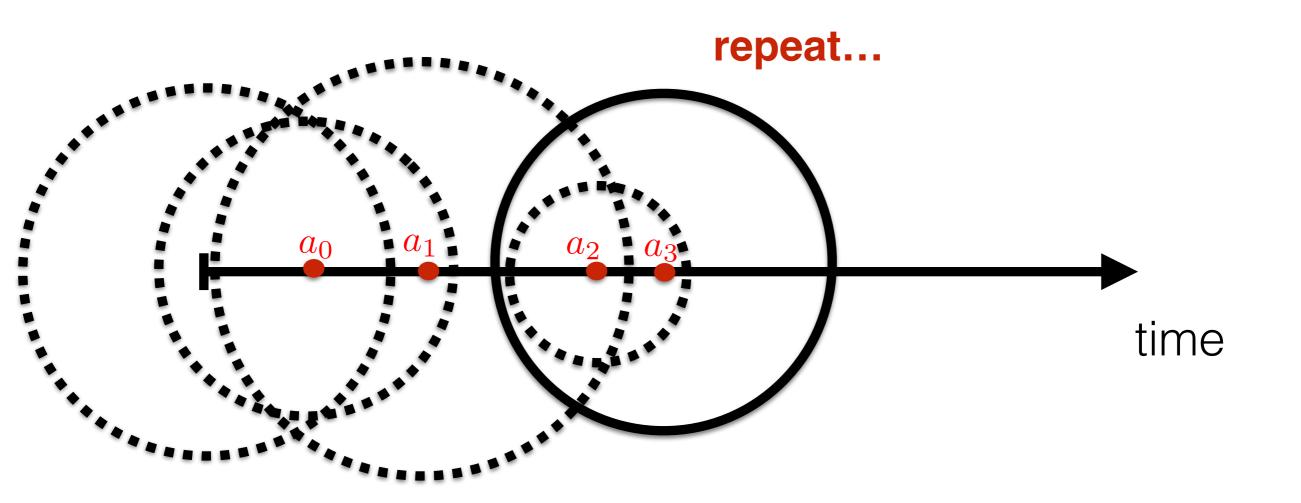


#### Analytic continuation: a semi-Lagrangian approach for all-time solutions



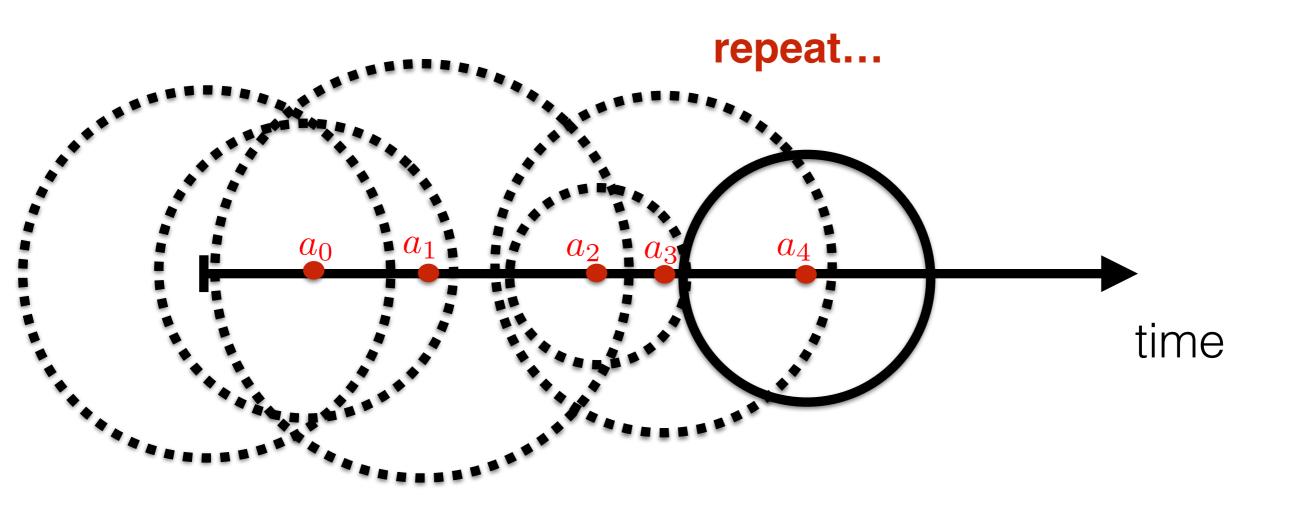


#### Analytic continuation: a semi-Lagrangian approach for all-time solutions





#### Analytic continuation: [CR,Sobolevskiĭ&Frisch, work in progress] a semi-Lagrangian approach for all-time solutions



Until some finite time (or shell crossing!)

#### Conclusions



- all-order recursion relations for the trajectories in  $\Lambda CDM$
- we have made use of an *a*-time-Taylor expansion
- we proved convergence of the series (from a=0 until some finite a-time)
- obtained analytic bounds on shell-crossing

Applications?

• e.g. efficient semi-Lagrangian method to obtain trajectories to **arbitrary high accuracy** (even higher than *N*-body!)



study shell crossing / birth of multi-streams



deterministic cosmological reconstruction