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Outline
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• Starting point: Dark matter evolution in               is governed by 

Euler-Poisson equations until first shell-crossing 

• how to obtain perturbative solutions to arbitrary high accuracy?"

• revisit perturbation expansion              it’s a time-Taylor series! 

valid for some time range, then re-expand, continue evolution 

• Taylor series representation of fully non-linear particle trajectories  

• practical realisation e.g. with a semi-Lagrangian method 

⇤CDM
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Do we need so high accuracy?

Single stream Multi 
streamtim

e

k-scale

• cosmological reconstruction  

to trace the whole past dynamical history of the LSS 

• Analytical evidence of shell crossing: (when?)
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Quick recap of EoMs
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The Eulerian description

� = (⇢� ⇢̄)/⇢̄density contrast                             ,  and           (rescaled) cosmological potential

@av + (v ·rE)v = � 3

2a

�
v +rE'g

�

@a� +rE · [(1 + �)v] = 0

r2
E'g =

�

a

cosmic scale factor (= modified time variable)     , satisfies Friedmann equationsa

Euler-Poisson equations:
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here: EdS
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The Lagrangian description

transform to Lagrangian space:                      

v = @L
ax(q, a)
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Jacobian J = det
�
rL

i xj

�
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q 7! x(q, a) = q + ⇠(q, a)
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Approximative techniques in literature
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• Eulerian or Lagrangian perturbation theory: assume that 
density contrast, peculiar velocity field, etc. are small 
 
          approximate fields without (really) specifying  
          the expansion parameter, e.g.:  
 
          loop expansion to get 
          statistical information of 
          density, etc.!

• Many extensions exist: renormalisation, resummation, 
EFTofLSS, … 

�(x, a) =
1X

n=1

�(n)(x) an
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Limitations of such techniques
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• No control of shell-crossing, i.e., no “idea” when exactly 
the fluid description breaks down in 3D!!

• perturbation theory in its weakest formulation:  
only approximative, because it is unknown if the  
conventional perturbation series is converging  

To overcome limitations,  
need rethinking of perturbation theory"

(be prepared that results might appear suddenly unknown!!)
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From approximative to exact solutions
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1. choose appropriate time and expansion parameter (e.g., a or D)!

2. derive explicit all-order recursion relations!

3. prove that the respective series is converging  
(with it comes a validity regime)!

4. use e.g. a semi-Lagrangian approach to obtain   
fully non-linear solutions of Euler-Poisson eqs.  
(until shell-crossing)

One possibility to obtain solutions to arbitrary high accuracy:
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Exact solutions for the Lagrangian displacement

 expansion & time parameter is e.g. cosmic scale factor 
 

 (simple!!) all-order recursion relations 

 series expansion is an exact solution for (here EdS)  
 

 displace particles from           until           (as the first step!)        

Taylor series!!    here around a=0

[Zheligovsky&Frisch’14]

0  a  TEdS =
0.0204

||rLv(init)||

TEdS

norm of initial  
velocity gradients

a = 0

⇠(q, a) =
1X

n=1

⇠(n)(q) an

[CR, Villone&Frisch’15] generalisation to   CDM and beyond ⇤
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D(a) = a� (2/11)⇤a4 + · · ·(or e.g.                                    )
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Recursion relations for 

rL · F (s) = rL · v(init)�s1 +
X

0<n<s

⇢
(3� s)/2� n2 � (s� n)2

(s+ 3/2)(s� 1)
µ(n,s�n)
2 + ⇤

4s� n2 � (s� n)2 � 6

(s+ 3/2)(s� 1)
µ(n,s�n�3)
2

�

+
X

n1+n2+n3=s

⇢
(3� s)/2� n2

1 � n2
2 � n2

3

(s+ 3/2)(s� 1)
µ(n1,n2,n3)
3 � ⇤

n2
1 + n2

2 + n2
3 � 4s+ 9

(s+ 3/2)(s� 1)
µ(n1,n2,n3�3)
3

�

� ⇤
s� 3

s+ 3/2
µ(s�3)
1

⇤CDM

longitudinal part of the s-order displacement

⇣
rL · F (s) ⌘ µ(s)

1

⌘

Cij = r�2rL
i rL

jµ, ⌫, i, j = 1, 2, 3

⇠(s)(q)

⇠(q, a) =
1X

s=1

⇠(s)(q) as
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q
initial position  

of particle            

a = 0• pushing the initial time up to            is a consequence of our  
treatment (-> CMB physics reduced to simple boundary conditions) 

• fully non-linear trajectories from  

• how to obtain trajectories beyond the radius of convergence?

a = 0

x(q, a) = q +
1X

s=1

⇠

(s)(q, a = 0) as

Taylor coefficient  
     at

0  a  TEdS =
0.0204

||rLv(init)||
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Analytic continuation:"
a semi-Lagrangian approach for all-time solutions

[CR,Sobolevskiĭ&Frisch, work in progress]

timea=0

disc of convergenceR(a = 0)

choose                  .  
Numerically, the larger    , the more Taylor coefficients are required  

a0

0 < a0 < R

a0

⇠(q, a) =
1X

s=1

⇠(s)(q) as

Evolve until    .Then transform back to Eulerian coordinates 
to initiate a fresh start

a0



time

a0

R(a0)

[CR,Sobolevskiĭ&Frisch, work in progress]Analytic continuation: 
a semi-Lagrangian approach for all-time solutions

Next time step, now at     ."
Taylor coefficients obtained"
at the new expansion point 

a0



time

repeat…

a0 a1

[CR,Sobolevskiĭ&Frisch, work in progress]Analytic continuation: 
a semi-Lagrangian approach for all-time solutions



time

a0 a1 a2

[CR,Sobolevskiĭ&Frisch, work in progress]Analytic continuation: 
a semi-Lagrangian approach for all-time solutions

repeat…



time

a0 a1 a2 a3

[CR,Sobolevskiĭ&Frisch, work in progress]Analytic continuation: 
a semi-Lagrangian approach for all-time solutions

repeat…



time

a0 a1 a2 a3 a4

Until some finite time (or shell crossing!)

[CR,Sobolevskiĭ&Frisch, work in progress]Analytic continuation: 
a semi-Lagrangian approach for all-time solutions

repeat…



• all-order recursion relations for the trajectories in 

• we have made use of an a-time-Taylor expansion 

• we proved convergence of the series 
(from a=0 until some finite a-time) 

• obtained analytic bounds on shell-crossing  
 

Conclusions

Applications?

⇤CDM

study shell crossing / birth of multi-streams 

deterministic cosmological reconstruction
Cornelius Rampf

• e.g. efficient semi-Lagrangian method to obtain trajectories 
to arbitrary high accuracy  (even higher than N-body!)
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